Yan Bao*, Jiachen Xu, Ruyue Guo*, Wenbo Zhang, Chao Liu and Peng Lei,
{"title":"A Flexible Leather-Based Sensor via the Dual In Situ Growth of Conductive Materials for Human Motion Detection","authors":"Yan Bao*, Jiachen Xu, Ruyue Guo*, Wenbo Zhang, Chao Liu and Peng Lei, ","doi":"10.1021/acs.langmuir.5c0007510.1021/acs.langmuir.5c00075","DOIUrl":null,"url":null,"abstract":"<p >Natural leather, with its mechanical strength, flexibility, and wearing comfort, is an ideal substrate material for wearable sensors. Currently, leather-based piezoresistive sensors still suffer from poor uniformity of conductive networks and weak interfacial interactions between conductive materials and leather, which limit their performance. Herein, it was innovatively proposed that polypyrrole (PPy) and silver nanoparticles (AgNPs) were sequentially grown in situ on the surface of collagen fibers (CFs). Then, the tanning process was carried out to produce a leather-based flexible wearable sensor (PPy/AgNPs-LBPS) with excellent conductivity, hydrothermal, and environmental stability. Specifically, the dual in situ growth and tanning process ensured the uniform penetration and distribution of conductive materials in leather substrates. Meanwhile, the hydrogen bonds between the conductive materials and CFs provided a firm combination to prevent the dropping of conductive materials. The synergistic effect of PPy and AgNPs enhanced the sensing performance of PPy/AgNPs-LBPS. It exhibited high sensitivity (0.65 kPa<sup>–1</sup> and 3.76), a wide detection range (0–80 kPa and 0–100%), and fast response capability. These characteristics enabled PPy/AgNPs-LBPS to monitor subtle activities and large-scale movements of the human body in real time, as well as tactile perception. This thesis provides a new idea for the intelligent design of traditional leather materials, multidimensional perception in electronic skin, and advancements in artificial intelligence.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 15","pages":"9740–9752 9740–9752"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c00075","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Natural leather, with its mechanical strength, flexibility, and wearing comfort, is an ideal substrate material for wearable sensors. Currently, leather-based piezoresistive sensors still suffer from poor uniformity of conductive networks and weak interfacial interactions between conductive materials and leather, which limit their performance. Herein, it was innovatively proposed that polypyrrole (PPy) and silver nanoparticles (AgNPs) were sequentially grown in situ on the surface of collagen fibers (CFs). Then, the tanning process was carried out to produce a leather-based flexible wearable sensor (PPy/AgNPs-LBPS) with excellent conductivity, hydrothermal, and environmental stability. Specifically, the dual in situ growth and tanning process ensured the uniform penetration and distribution of conductive materials in leather substrates. Meanwhile, the hydrogen bonds between the conductive materials and CFs provided a firm combination to prevent the dropping of conductive materials. The synergistic effect of PPy and AgNPs enhanced the sensing performance of PPy/AgNPs-LBPS. It exhibited high sensitivity (0.65 kPa–1 and 3.76), a wide detection range (0–80 kPa and 0–100%), and fast response capability. These characteristics enabled PPy/AgNPs-LBPS to monitor subtle activities and large-scale movements of the human body in real time, as well as tactile perception. This thesis provides a new idea for the intelligent design of traditional leather materials, multidimensional perception in electronic skin, and advancements in artificial intelligence.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).