Juliane Koch, Patrick Häuser, Peter Kleinschmidt, Lisa Liborius, Nils Weimann and Thomas Hannappel*,
{"title":"Following Charge Carrier Transport in Freestanding Core–Shell GaN Nanowires on n-Si(111) Substrates","authors":"Juliane Koch, Patrick Häuser, Peter Kleinschmidt, Lisa Liborius, Nils Weimann and Thomas Hannappel*, ","doi":"10.1021/acsaelm.5c0019810.1021/acsaelm.5c00198","DOIUrl":null,"url":null,"abstract":"<p >Well-defined heterojunctions inside nanostructured device structures are a basic requirement for any nanoscale device design with advanced electrical properties. For the evaluation of the desired functionalities on the nanoscale, a study of the electrical behavior with appropriate spatial resolution is highly revealing. We specifically address GaN-based core–shell heterostructures and perform multiprobe measurements with ultrahigh spatial resolution. The <i>n</i><sup>+</sup>-GaN nanowire core exhibits favorable electrical conductivity, and the behavior of charge carrier transport at a <i>n</i><sup>+</sup>-nonintentionally doped -<i>n</i><sup>+</sup>-doped core–shell double heterojunction is demonstrated when applying an electron beam-induced current mode. This investigation offers direct insights into the selective charge carrier transport, and therefore into the rectifying junction within the core–shell GaN nanowire, and contributes to a model of the conductivity channels. This experimental approach is crucial for any future advancement of device structures that incorporate bottom-up-grown, heterostructure core–shell GaN nanowires on conductive Si(111) substrates.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 8","pages":"3469–3476 3469–3476"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaelm.5c00198","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00198","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Well-defined heterojunctions inside nanostructured device structures are a basic requirement for any nanoscale device design with advanced electrical properties. For the evaluation of the desired functionalities on the nanoscale, a study of the electrical behavior with appropriate spatial resolution is highly revealing. We specifically address GaN-based core–shell heterostructures and perform multiprobe measurements with ultrahigh spatial resolution. The n+-GaN nanowire core exhibits favorable electrical conductivity, and the behavior of charge carrier transport at a n+-nonintentionally doped -n+-doped core–shell double heterojunction is demonstrated when applying an electron beam-induced current mode. This investigation offers direct insights into the selective charge carrier transport, and therefore into the rectifying junction within the core–shell GaN nanowire, and contributes to a model of the conductivity channels. This experimental approach is crucial for any future advancement of device structures that incorporate bottom-up-grown, heterostructure core–shell GaN nanowires on conductive Si(111) substrates.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico