Depolymerizable Thermosetting Dielectric Elastomers Toughened by Sacrificial Hydrogen Bonds for Sustainable Capacitive Strain-Sensor

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ZiLong Cao, XuRan Xu, FuYao Sun, Hai Yao, JingYi Zhang, YuJuan Li, YiDing Cheng, GuanSheng Chen, YongQiang Jia, BoWen Yao, JianHua Xu, JiaJun Fu
{"title":"Depolymerizable Thermosetting Dielectric Elastomers Toughened by Sacrificial Hydrogen Bonds for Sustainable Capacitive Strain-Sensor","authors":"ZiLong Cao,&nbsp;XuRan Xu,&nbsp;FuYao Sun,&nbsp;Hai Yao,&nbsp;JingYi Zhang,&nbsp;YuJuan Li,&nbsp;YiDing Cheng,&nbsp;GuanSheng Chen,&nbsp;YongQiang Jia,&nbsp;BoWen Yao,&nbsp;JianHua Xu,&nbsp;JiaJun Fu","doi":"10.1002/adfm.202505979","DOIUrl":null,"url":null,"abstract":"<p>The development of sustainable capacitive strain-sensors necessitates dielectric elastomers that integrate mechanical robustness and closed-loop recyclability. Herein, a self-healing thermosetting elastomer (PIT) is designed that simultaneously achieves depolymerizability and high toughness through a dual-crosslinking architecture combining triazine-based dynamic covalent linkages and supramolecular hydrogen bonds. The dynamic nucleophilic aromatic substitution enables closed-loop chemical recycling, while the sacrificial hydrogen bonding dissipates energy to enhance mechanical toughness. The electron-deficient triazine structure confers enhanced dielectric properties (κ = 5.94 at 100 kHz), surpassing common silicone-based counterparts (e.g., silicon rubber, κ&lt;3). Capitalizing on these attributes, a recyclable capacitive strain sensor is pioneered by assembling PIT dielectric with liquid metal electrodes. The device demonstrates superior performance metrics, including broad detection range (1%-250% strain) with high sensitivity (gauge factor = 0.98), mechanical reliability (&gt;500 cycles), and full-component recyclability. Real-time human motion monitoring validates practical functionality, while controlled depolymerization regenerates pristine materials for sensor re-fabrication. This work presents a material design paradigm and sustainable manufacturing strategy for eco-conscious flexible electronics.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 40","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202505979","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of sustainable capacitive strain-sensors necessitates dielectric elastomers that integrate mechanical robustness and closed-loop recyclability. Herein, a self-healing thermosetting elastomer (PIT) is designed that simultaneously achieves depolymerizability and high toughness through a dual-crosslinking architecture combining triazine-based dynamic covalent linkages and supramolecular hydrogen bonds. The dynamic nucleophilic aromatic substitution enables closed-loop chemical recycling, while the sacrificial hydrogen bonding dissipates energy to enhance mechanical toughness. The electron-deficient triazine structure confers enhanced dielectric properties (κ = 5.94 at 100 kHz), surpassing common silicone-based counterparts (e.g., silicon rubber, κ<3). Capitalizing on these attributes, a recyclable capacitive strain sensor is pioneered by assembling PIT dielectric with liquid metal electrodes. The device demonstrates superior performance metrics, including broad detection range (1%-250% strain) with high sensitivity (gauge factor = 0.98), mechanical reliability (>500 cycles), and full-component recyclability. Real-time human motion monitoring validates practical functionality, while controlled depolymerization regenerates pristine materials for sensor re-fabrication. This work presents a material design paradigm and sustainable manufacturing strategy for eco-conscious flexible electronics.

Abstract Image

Abstract Image

可持续电容应变传感器用牺牲氢键增韧的可解聚热固性介电弹性体
可持续电容应变传感器的发展需要介电弹性体集机械稳健性和闭环可回收性于一体。本文设计了一种自愈热固性弹性体(PIT),该弹性体通过结合基于三嗪的动态共价键和超分子氢键的双交联结构同时实现解聚性和高韧性。动态亲核芳烃取代实现了闭环化学循环,而牺牲氢键耗散能量以提高机械韧性。缺乏电子的三嗪结构赋予增强的介电性能(κ = 5.94在100 kHz),超过普通的硅基对立物(如硅橡胶,κ<3)。利用这些特性,一种可回收的电容应变传感器是由PIT电介质与液态金属电极组装而成的。该装置具有优异的性能指标,包括宽检测范围(1%-250%应变)、高灵敏度(测量因子= 0.98)、机械可靠性(>;500次循环)和全部件可回收性。实时人体运动监测验证了实际功能,而控制解聚再生原始材料用于传感器重新制造。这项工作提出了一种材料设计范式和可持续制造战略的生态意识柔性电子产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信