{"title":"Self-adaptive copper pairs on CuO(111) boosting ammonia catalytic combustion","authors":"Xue Su, Zheng-Qing Huang, Chun-Ran Chang","doi":"10.1002/aic.18864","DOIUrl":null,"url":null,"abstract":"Copper oxides exhibit outstanding performance in ammonia catalytic combustion, but a limited understanding of reaction mechanisms and the nature of active sites under operating conditions hinders further catalyst optimization. Utilizing density functional theory-based microkinetic simulations, we herein establish a comprehensive reaction mechanism on CuO(111), which enables the successful prediction of the experimental light-off temperature and identifies the self-adaptive copper pairs as key active sites. The NH<sub>2</sub> coupling over the copper pairs is the critical step for N<sub>2</sub> formation, which, along with H<sub>2</sub>O production, governs the overall reaction rate. Interestingly, the copper atom pairs can adjust their atomic distance ranging from 2.42 to 2.90 Å and their oxidation states between Cu<sup>I</sup> and Cu<sup>II</sup> in response to the adsorbed intermediates, thereby facilitating the catalytic cycle and specifically inhibiting NH<sub>2</sub> dehydrogenation. Moreover, reducing copper pair distance through surface compressive strain can further lower the activation energies of rate-determining steps and enhance the reactivity.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"18 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18864","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Copper oxides exhibit outstanding performance in ammonia catalytic combustion, but a limited understanding of reaction mechanisms and the nature of active sites under operating conditions hinders further catalyst optimization. Utilizing density functional theory-based microkinetic simulations, we herein establish a comprehensive reaction mechanism on CuO(111), which enables the successful prediction of the experimental light-off temperature and identifies the self-adaptive copper pairs as key active sites. The NH2 coupling over the copper pairs is the critical step for N2 formation, which, along with H2O production, governs the overall reaction rate. Interestingly, the copper atom pairs can adjust their atomic distance ranging from 2.42 to 2.90 Å and their oxidation states between CuI and CuII in response to the adsorbed intermediates, thereby facilitating the catalytic cycle and specifically inhibiting NH2 dehydrogenation. Moreover, reducing copper pair distance through surface compressive strain can further lower the activation energies of rate-determining steps and enhance the reactivity.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.