Stuart A. Macgregor, Pablo Domingo-Legarda, Samuel E. Neale, Ambre Carpentier, Claire L. McMullin, Michael Findlay, Igor Larrosa
{"title":"The Mechanism of Ru-catalyzed Directed C–H Arylation of Arenes: the Key Role of Bis-Cyclometalated Intermediates.","authors":"Stuart A. Macgregor, Pablo Domingo-Legarda, Samuel E. Neale, Ambre Carpentier, Claire L. McMullin, Michael Findlay, Igor Larrosa","doi":"10.1002/anie.202506707","DOIUrl":null,"url":null,"abstract":"The mechanism of Ru-catalysed N-directed C-H ortho-arylation with haloarenes has been under intense scrutiny over the last decade, with conflicting proposals concerning the relevance of various catalytic intermediates and the nature of the key steps. This work presents experimental and computational studies that address these long-standing questions. Stoichiometric, catalytic and mechanistic kinetic studies, supported by DFT calculations, reveal that bis-cyclometallated ruthenium species are key intermediates in these reactions. These studies also show that oxidative addition with bromoarenes proceeds via a concerted oxidative addition pathway, as demonstrated by DFT and experimental kinetic orders. Bromoarene activation does not proceed at mono-cyclometalated species. In the catalytic process, zero order kinetics are observed on both reaction substrates, an observation that is rationalised by DFT calculations which predict a rate-limiting step within the product-release stage. These results showcase how detailed experimental and DFT studies can combine to probe mechanistic questions, as well as resolving opposing views around the mechanism of these Ru-catalysed arylations that form the basis of promising mild C-H functionalisations.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"23 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202506707","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanism of Ru-catalysed N-directed C-H ortho-arylation with haloarenes has been under intense scrutiny over the last decade, with conflicting proposals concerning the relevance of various catalytic intermediates and the nature of the key steps. This work presents experimental and computational studies that address these long-standing questions. Stoichiometric, catalytic and mechanistic kinetic studies, supported by DFT calculations, reveal that bis-cyclometallated ruthenium species are key intermediates in these reactions. These studies also show that oxidative addition with bromoarenes proceeds via a concerted oxidative addition pathway, as demonstrated by DFT and experimental kinetic orders. Bromoarene activation does not proceed at mono-cyclometalated species. In the catalytic process, zero order kinetics are observed on both reaction substrates, an observation that is rationalised by DFT calculations which predict a rate-limiting step within the product-release stage. These results showcase how detailed experimental and DFT studies can combine to probe mechanistic questions, as well as resolving opposing views around the mechanism of these Ru-catalysed arylations that form the basis of promising mild C-H functionalisations.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.