Constructing Oxygen Vacancy to Stable Anionic Redox Reaction for High Energy Sodium Battery

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Tianzhen Ren, Lu-Kang Zhao, Ziyu Mei, Hong Chen, Zhao-Meng Liu, Xuan-Wen Gao, Qinfen Gu, Wen-Bin Luo
{"title":"Constructing Oxygen Vacancy to Stable Anionic Redox Reaction for High Energy Sodium Battery","authors":"Tianzhen Ren, Lu-Kang Zhao, Ziyu Mei, Hong Chen, Zhao-Meng Liu, Xuan-Wen Gao, Qinfen Gu, Wen-Bin Luo","doi":"10.1002/aenm.202501007","DOIUrl":null,"url":null,"abstract":"Constructing heterostructure for synergistic effect plays an indispensable role in enhancing the energy density and cycling stability of layered oxide for sodium-ion batteries. However, the mechanisms of heterostructure formation and synergistic effects remain inadequately understood. In this study, the strategy of controlling oxygen vacancies is carried out based on Na<sub>2</sub>Mn<sub>3</sub>O<sub>7</sub> cathode material. The formation of oxygen vacancy can change the coordination environment of Mn and Na<sup>+</sup> occupancy between MnO<sub>2</sub> layers, which is a significant driving force for structure transitions. Furthermore, the ratio of lattice oxygen to vacancy oxygen (L<sub>O</sub>/V<sub>O</sub>) demonstrates a distinct nonlinear relationship with the structural proportion in heterostructure materials, which can be used as a critical descriptor for evaluating the structural proportion. The obtained heterostructure with Na<sub>2</sub>Mn<sub>3</sub>O<sub>7</sub> (<span data-altimg=\"/cms/asset/c1c226c2-b976-482c-917e-76f74da44bcc/aenm202501007-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aenm202501007-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3\" data-semantic-content=\"4\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper P ModifyingAbove 1 With bar\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mover data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; margin-bottom: -0.544em;\"><mjx-mo data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\"><mjx-stretchy-h style=\"width: 0.5em;\"><mjx-ext><mjx-c></mjx-c></mjx-ext></mjx-stretchy-h></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-base></mjx-mover></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:16146832:media:aenm202501007:aenm202501007-math-0001\" display=\"inline\" location=\"graphic/aenm202501007-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3\" data-semantic-content=\"4\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper P ModifyingAbove 1 With bar\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">P</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"overscore\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn><mo data-semantic-=\"\" data-semantic-parent=\"3\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\">¯</mo></mover></mrow>${\\rm{P\\bar 1}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, 55 wt.%), P2-Na<sub>0.67</sub>MnO<sub>2</sub> (P6<sub>3</sub>/mmc, 40 wt.%) and O′3-NaMnO<sub>2</sub> (C/2 m, 5 wt.%) retains anionic redox characteristics, exhibits a high specific capacity of 245 mAh g<sup>−1</sup> with an energy density of 596 Wh kg<sup>−1</sup>. The formation of heterogeneous interfaces provides numerous Na<sup>+</sup> insertion/extraction sites and the presence of a minor amount of O′3-NaMnO<sub>2</sub> effectively mitigates the Jahn-Teller effect at low voltages, enhancing structural stability. This work offers new insights into the rational design and application of heterostructure layered oxide cathodes.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"6 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202501007","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing heterostructure for synergistic effect plays an indispensable role in enhancing the energy density and cycling stability of layered oxide for sodium-ion batteries. However, the mechanisms of heterostructure formation and synergistic effects remain inadequately understood. In this study, the strategy of controlling oxygen vacancies is carried out based on Na2Mn3O7 cathode material. The formation of oxygen vacancy can change the coordination environment of Mn and Na+ occupancy between MnO2 layers, which is a significant driving force for structure transitions. Furthermore, the ratio of lattice oxygen to vacancy oxygen (LO/VO) demonstrates a distinct nonlinear relationship with the structural proportion in heterostructure materials, which can be used as a critical descriptor for evaluating the structural proportion. The obtained heterostructure with Na2Mn3O7 (P1¯${\rm{P\bar 1}}$, 55 wt.%), P2-Na0.67MnO2 (P63/mmc, 40 wt.%) and O′3-NaMnO2 (C/2 m, 5 wt.%) retains anionic redox characteristics, exhibits a high specific capacity of 245 mAh g−1 with an energy density of 596 Wh kg−1. The formation of heterogeneous interfaces provides numerous Na+ insertion/extraction sites and the presence of a minor amount of O′3-NaMnO2 effectively mitigates the Jahn-Teller effect at low voltages, enhancing structural stability. This work offers new insights into the rational design and application of heterostructure layered oxide cathodes.

Abstract Image

构建氧空位以稳定高能钠电池阴离子氧化还原反应
构建异质结构以实现协同效应对提高钠离子电池层状氧化物的能量密度和循环稳定性起着不可或缺的作用。然而,异质结构形成的机制和协同效应仍不清楚。本研究基于Na2Mn3O7正极材料,提出了控制氧空位的策略。氧空位的形成可以改变MnO2层间Mn和Na+占据的配位环境,是结构转变的重要驱动力。此外,晶格氧与空位氧的比值(LO/VO)与异质结构材料的结构比例呈明显的非线性关系,可以作为评价异质结构材料结构比例的关键描述符。所获得的异质结构Na2Mn3O7 (P≠1¯${\rm{P\bar 1}}$, 55 wt.%)、P2-Na0.67MnO2 (P63/mmc, 40 wt.%)和O ' 3-NaMnO2 (C/ 2m, 5 wt.%)保留了阴离子氧化还原特性,具有245 mAh g - 1的高比容量和596 Wh kg - 1的能量密度。异质界面的形成提供了大量的Na+插入/提取位点,少量O ' 3-NaMnO2的存在有效地减轻了低电压下的Jahn-Teller效应,增强了结构的稳定性。这项工作为异质结构层状氧化物阴极的合理设计和应用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信