Zhuanyi Liu, Suli Chen, Zhenhai Shi, Ping Qiu, Kun He, Qiongqiong Lu, Minghao Yu, Tianxi Liu
{"title":"Multivalent Dipole Interactions-Driven Supramolecular Polymer Layer Enables Highly Stable Zn Anode Under Harsh Conditions","authors":"Zhuanyi Liu, Suli Chen, Zhenhai Shi, Ping Qiu, Kun He, Qiongqiong Lu, Minghao Yu, Tianxi Liu","doi":"10.1002/aenm.202502010","DOIUrl":null,"url":null,"abstract":"Aggressive side reactions and dendrite growth, associated with the unstable Zn anode/electrolyte interface, have impeded the practical application of Zn metal-based batteries. Here, a donor-acceptor (D-A) polymer is employed to reconstruct a robust supramolecular polymer (SP) protective layer to achieve highly stable Zn anodes. The D-A polymer possessing abundant electron donor and acceptor sites can dynamically co-crosslink with water molecules and Zn<sup>2</sup>⁺ through multivalent dipole interactions (MDIs), resulting in the formation of a supramolecular polymer network. The MDIs disrupt the original strong hydrogen-bonding network within the D-A polymer, leading to the reconfiguration of polymer chain conformations and an increase in the intermolecular free volume exposing more widely distributed dipoles, thereby regulating the Zn<sup>2+</sup> desolvation behavior and facilitating rapid and uniform Zn<sup>2+</sup> plating. Meanwhile, the resultant supramolecular network endows the SP with an ultra-high mechanical modulus of 10.4 GPa, which can homogenize the stress distribution during the plating process for effective dendrite suppression. Consequently, the SP-assisted asymmetric cell achieves nearly 99.94% Coulombic efficiency over 9000 cycles, enabling the Zn/Zn cell to cycle for over 540 h under an ultrahigh 92% Zn utilization. Outstanding cycling stability is also successfully demonstrated in high mass-loading (≈12.8 mg cm<sup>−2</sup>) pouch cells, further demonstrating its prospects for practical applications.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"5 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202502010","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aggressive side reactions and dendrite growth, associated with the unstable Zn anode/electrolyte interface, have impeded the practical application of Zn metal-based batteries. Here, a donor-acceptor (D-A) polymer is employed to reconstruct a robust supramolecular polymer (SP) protective layer to achieve highly stable Zn anodes. The D-A polymer possessing abundant electron donor and acceptor sites can dynamically co-crosslink with water molecules and Zn2⁺ through multivalent dipole interactions (MDIs), resulting in the formation of a supramolecular polymer network. The MDIs disrupt the original strong hydrogen-bonding network within the D-A polymer, leading to the reconfiguration of polymer chain conformations and an increase in the intermolecular free volume exposing more widely distributed dipoles, thereby regulating the Zn2+ desolvation behavior and facilitating rapid and uniform Zn2+ plating. Meanwhile, the resultant supramolecular network endows the SP with an ultra-high mechanical modulus of 10.4 GPa, which can homogenize the stress distribution during the plating process for effective dendrite suppression. Consequently, the SP-assisted asymmetric cell achieves nearly 99.94% Coulombic efficiency over 9000 cycles, enabling the Zn/Zn cell to cycle for over 540 h under an ultrahigh 92% Zn utilization. Outstanding cycling stability is also successfully demonstrated in high mass-loading (≈12.8 mg cm−2) pouch cells, further demonstrating its prospects for practical applications.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.