Interface Engineering Assisted 3D Printing of Silicone Composites with Synergistically Optimized Impact Resistance and Electromagnetic Interference Shielding Effectiveness

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-21 DOI:10.1002/smll.202500323
Jiajun Yu, Shuai Liu, Purun Wang, Zimu Li, Shilong Duan, Min Sang, Sheng Wang, Xinglong Gong
{"title":"Interface Engineering Assisted 3D Printing of Silicone Composites with Synergistically Optimized Impact Resistance and Electromagnetic Interference Shielding Effectiveness","authors":"Jiajun Yu,&nbsp;Shuai Liu,&nbsp;Purun Wang,&nbsp;Zimu Li,&nbsp;Shilong Duan,&nbsp;Min Sang,&nbsp;Sheng Wang,&nbsp;Xinglong Gong","doi":"10.1002/smll.202500323","DOIUrl":null,"url":null,"abstract":"<p>Silicone composites have been universally employed in smart devices, flexible electronics, and mechanical metamaterials. However, it remained challenging to develop 3D printable silicone composites with desirable mechanical and electrical properties. Here, an interface engineering strategy is reported, developing heterointerfacial silver-coated hollow glass microspheres (SHGMs), which are integrated with polydimethylsiloxane (PDMS) for 3D printing of impact-resistant, highly conductive, and mechanically robust SHGMs-PDMS (SHP) composites. SHP simultaneously achieves high compression modulus (12.65 MPa), substantial energy dissipation density (1.58 × 10<sup>6</sup> N m<sup>−2</sup> at 50% strain), excellent conductivity (2.55 × 10<sup>3</sup> S m<sup>−1</sup>), and long-period robustness. SHP presents extraordinary impact resistance under dynamic impacts, reaching a considerable energy dissipation of 1.91 kJ m<sup>−1</sup> at an incident velocity of 192.3 m s<sup>−1</sup>. More importantly, SHP with 2 mm in thickness achieves an ultraefficient electromagnetic interference (EMI) effectiveness of 92.5 dB, which is among that of state-of-the-art silicone and its derivatives, and can maintain favorable shielding efficiency (&gt;70 dB) after undergoing mechanical excitations. Moreover, the formability enables it to fabricate delicate structures with a negative Poisson's ratio, ensuring adaptive fit and thus providing complete protection for individuals. This work paves an effective way to rapidly manufacture silicone composites with expected functions for new-generation protective devices.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 23","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202500323","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicone composites have been universally employed in smart devices, flexible electronics, and mechanical metamaterials. However, it remained challenging to develop 3D printable silicone composites with desirable mechanical and electrical properties. Here, an interface engineering strategy is reported, developing heterointerfacial silver-coated hollow glass microspheres (SHGMs), which are integrated with polydimethylsiloxane (PDMS) for 3D printing of impact-resistant, highly conductive, and mechanically robust SHGMs-PDMS (SHP) composites. SHP simultaneously achieves high compression modulus (12.65 MPa), substantial energy dissipation density (1.58 × 106 N m−2 at 50% strain), excellent conductivity (2.55 × 103 S m−1), and long-period robustness. SHP presents extraordinary impact resistance under dynamic impacts, reaching a considerable energy dissipation of 1.91 kJ m−1 at an incident velocity of 192.3 m s−1. More importantly, SHP with 2 mm in thickness achieves an ultraefficient electromagnetic interference (EMI) effectiveness of 92.5 dB, which is among that of state-of-the-art silicone and its derivatives, and can maintain favorable shielding efficiency (>70 dB) after undergoing mechanical excitations. Moreover, the formability enables it to fabricate delicate structures with a negative Poisson's ratio, ensuring adaptive fit and thus providing complete protection for individuals. This work paves an effective way to rapidly manufacture silicone composites with expected functions for new-generation protective devices.

Abstract Image

Abstract Image

界面工程辅助3D打印有机硅复合材料协同优化抗冲击性能和电磁干扰屏蔽效果
有机硅复合材料已广泛应用于智能设备,柔性电子产品和机械超材料。然而,开发具有理想机械和电气性能的3D打印有机硅复合材料仍然具有挑战性。本文报道了一种界面工程策略,即开发异质界面镀银中空玻璃微球(SHGMs),该微球与聚二甲基硅氧烷(PDMS)集成,用于3D打印耐冲击、高导电性和机械坚固的SHGMs - PDMS (SHP)复合材料。SHP同时具有高压缩模量(12.65 MPa)、高能量耗散密度(50%应变时为1.58 × 106 N m−2)、优异的电导率(2.55 × 103 S m−1)和长周期稳健性。SHP在动力冲击下表现出优异的抗冲击性能,在入射速度为192.3 m s−1时,能量耗散达到1.91 kJ m−1。更重要的是,厚度为2mm的SHP实现了92.5 dB的超高效电磁干扰(EMI)效率,这是目前最先进的硅酮及其衍生物之一,并且在受到机械激励后可以保持良好的屏蔽效率(>70 dB)。此外,可成形性使其能够制造具有负泊松比的精致结构,确保自适应配合,从而为个人提供完整的保护。这项工作为快速制造具有新一代保护装置预期功能的有机硅复合材料铺平了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信