Eric J. McLaren, Guangshou Feng, Noah H. Watkins, Qiu Wang
{"title":"Copper-Catalyzed Allylic Amination of Alkenes Using O-Acylhydroxylamines: A Direct Entry to Diverse N-Alkyl Allylamines","authors":"Eric J. McLaren, Guangshou Feng, Noah H. Watkins, Qiu Wang","doi":"10.1021/acscatal.5c01859","DOIUrl":null,"url":null,"abstract":"We report a copper-catalyzed direct allylic amination of alkenes using readily available <i>O</i>-benzyolhydroxylamines as the alkylamine precursors and internal oxidant. A range of primary and secondary alkylamines can be installed onto diversely substituted alkenes for the rapid construction of <i>N</i>-alkyl allylamines. Mechanistic studies support that the reaction engages an initial electrophilic amination to alkenes with anti-Markovnikov selectivity and subsequently a regioselective oxidative elimination to furnish the double bond transposition. In the electrophilic amination step, the use of strong Brønsted acid is critical for generating the key aminium radical cation (ARC) species.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"63 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.5c01859","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We report a copper-catalyzed direct allylic amination of alkenes using readily available O-benzyolhydroxylamines as the alkylamine precursors and internal oxidant. A range of primary and secondary alkylamines can be installed onto diversely substituted alkenes for the rapid construction of N-alkyl allylamines. Mechanistic studies support that the reaction engages an initial electrophilic amination to alkenes with anti-Markovnikov selectivity and subsequently a regioselective oxidative elimination to furnish the double bond transposition. In the electrophilic amination step, the use of strong Brønsted acid is critical for generating the key aminium radical cation (ARC) species.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.