Dynamically Stable Dipotassium Rhodizonate Interphase Enables NASICON‐Type Electrolyte Based Li‐FeF3 Conversion Batteries

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Meng Lei, Shengsheng Fan, Hailong Wu, Kexian Huang, Keyi Chen, Chilin Li
{"title":"Dynamically Stable Dipotassium Rhodizonate Interphase Enables NASICON‐Type Electrolyte Based Li‐FeF3 Conversion Batteries","authors":"Meng Lei, Shengsheng Fan, Hailong Wu, Kexian Huang, Keyi Chen, Chilin Li","doi":"10.1002/aenm.202500908","DOIUrl":null,"url":null,"abstract":"Due to easy reduction of Ti<jats:sup>4+</jats:sup> composition, Li<jats:sub>1.3</jats:sub>Al<jats:sub>0.3</jats:sub>Ti<jats:sub>1.7</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub> (LATP) electrolyte suffers from serious structure decomposition and texture degradation, hindering the development of LATP‐based solid‐state batteries. Herein, a dynamically stable p‐type semiconductor dipotassium rhodizonate K<jats:sub>2</jats:sub>C<jats:sub>6</jats:sub>O<jats:sub>6</jats:sub> (DKR) as interface buffer layer is proposed to enhance the endurance of Li‐LATP interface. The DKR buffer layer with interlayer lubrication, electron blocking and Li‐ion conduction abilities can be tightly attached to the LATP ceramic surface. It enables the Schottky contact with Li metal, and endows the anode interface with dynamically electrochemical stability, faster Li<jats:sup>+</jats:sup> dissolution and migration rate, and better interfacial kinetics, leading to the dendrite‐free Li plating and stripping during long‐term cycling (over 1200 h). LATP‐based Li‐FeF<jats:sub>3</jats:sub> conversion solid‐state batteries are driven with the release of much higher reversible capacity (568.1 mAh·g<jats:sup>−1</jats:sup>) and the preservation of long lifepan (350 cycles). Without the wetting at cathode‐electrolyte interface, a high‐loading (3 mg·cm<jats:sup>−2</jats:sup>) FeF<jats:sub>3</jats:sub> still delivers the high initial capacity of 545.4 mAh·g<jats:sup>−1</jats:sup> and reversible capacity of 400 mAh·g<jats:sup>−1</jats:sup>. This dynamically stable buffer layer strategy provides a novel solution to the practical application of LATP‐based solid‐state batteries.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"11 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202500908","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Due to easy reduction of Ti4+ composition, Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte suffers from serious structure decomposition and texture degradation, hindering the development of LATP‐based solid‐state batteries. Herein, a dynamically stable p‐type semiconductor dipotassium rhodizonate K2C6O6 (DKR) as interface buffer layer is proposed to enhance the endurance of Li‐LATP interface. The DKR buffer layer with interlayer lubrication, electron blocking and Li‐ion conduction abilities can be tightly attached to the LATP ceramic surface. It enables the Schottky contact with Li metal, and endows the anode interface with dynamically electrochemical stability, faster Li+ dissolution and migration rate, and better interfacial kinetics, leading to the dendrite‐free Li plating and stripping during long‐term cycling (over 1200 h). LATP‐based Li‐FeF3 conversion solid‐state batteries are driven with the release of much higher reversible capacity (568.1 mAh·g−1) and the preservation of long lifepan (350 cycles). Without the wetting at cathode‐electrolyte interface, a high‐loading (3 mg·cm−2) FeF3 still delivers the high initial capacity of 545.4 mAh·g−1 and reversible capacity of 400 mAh·g−1. This dynamically stable buffer layer strategy provides a novel solution to the practical application of LATP‐based solid‐state batteries.

Abstract Image

动态稳定的罗地亚酸二钾盐相间物实现了基于 NASICON 型电解质的锂-FeF3 转换电池
由于Ti4+成分容易还原,Li1.3Al0.3Ti1.7(PO4)3 (LATP)电解质结构分解和织构退化严重,阻碍了LATP基固态电池的发展。本文提出了一种动态稳定的p型半导体双红矾酸钾K2C6O6 (DKR)作为界面缓冲层,以提高Li‐LATP界面的耐久性。具有层间润滑、电子阻断和Li离子传导能力的DKR缓冲层可以紧密地附着在LATP陶瓷表面。它能够与锂金属进行Schottky接触,并赋予阳极界面动态电化学稳定性,更快的Li+溶解和迁移速率以及更好的界面动力学,从而在长周期(超过1200 h)内实现无枝晶的锂电镀和剥离。LATP基Li - FeF3转换固态电池具有更高的可逆容量(568.1 mAh·g−1)和更长的寿命(350次循环)。在阴极-电解质界面未发生润湿的情况下,高负载(3 mg·cm - 2) FeF3仍能提供545.4 mAh·g - 1的高初始容量和400 mAh·g - 1的可逆容量。这种动态稳定的缓冲层策略为基于LATP的固态电池的实际应用提供了一种新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信