Biobased Oleyl Glycidyl Ether: Copolymerization with Ethylene Oxide, Postmodification, Thermal Properties, and Micellization Behavior

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Gregor M. Linden, Sandra Schüttner, Nora Fribiczer, Sebastian Seiffert, Holger Frey
{"title":"Biobased Oleyl Glycidyl Ether: Copolymerization with Ethylene Oxide, Postmodification, Thermal Properties, and Micellization Behavior","authors":"Gregor M. Linden, Sandra Schüttner, Nora Fribiczer, Sebastian Seiffert, Holger Frey","doi":"10.1039/d5py00159e","DOIUrl":null,"url":null,"abstract":"Oleyl glycidyl ether (OlGE) is a highly hydrophobic monomer synthesized from a biobased fatty alcohol and epichlorohydrin. When combined with hydrophilic monomethoxy poly(ethylene glycol) (mPEG) macroinitiators, well-defined, highly amphiphilic AB block copolymers are obtained via anionic ring-opening polymerization (Đ ≤ 1.08). Surprisingly, an investigation of the copolymerization kinetics of OlGE and ethylene oxide revealed an almost ideally random copolymerization (rEO = 1.27, rOlGE = 0.78) despite the significant structural differences. Both statistical and block copolymers were investigated regarding their behavior in aqueous solution. The block copolymers of the type mPEG-b-POlGE featured two distinct melting temperatures (Tms). Besides a melting transition of mPEG, a second Tm is attributed to the crystallization of the cis-alkenyl side chain of the OlGE units. Varying degrees of side chain hydrogenation of the POlGE homopolymer using potassium azodicarboxylate (PADA) allowed for tailoring of the Tm. The thiol-ene click reaction allowed subsequent functionalization. This work not merely highlights the prospect of novel polyether surfactants, it also suggests the potential of biobased long-chain polyethers for the development of drug delivery systems featuring temperature-controlled release.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"13 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5py00159e","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Oleyl glycidyl ether (OlGE) is a highly hydrophobic monomer synthesized from a biobased fatty alcohol and epichlorohydrin. When combined with hydrophilic monomethoxy poly(ethylene glycol) (mPEG) macroinitiators, well-defined, highly amphiphilic AB block copolymers are obtained via anionic ring-opening polymerization (Đ ≤ 1.08). Surprisingly, an investigation of the copolymerization kinetics of OlGE and ethylene oxide revealed an almost ideally random copolymerization (rEO = 1.27, rOlGE = 0.78) despite the significant structural differences. Both statistical and block copolymers were investigated regarding their behavior in aqueous solution. The block copolymers of the type mPEG-b-POlGE featured two distinct melting temperatures (Tms). Besides a melting transition of mPEG, a second Tm is attributed to the crystallization of the cis-alkenyl side chain of the OlGE units. Varying degrees of side chain hydrogenation of the POlGE homopolymer using potassium azodicarboxylate (PADA) allowed for tailoring of the Tm. The thiol-ene click reaction allowed subsequent functionalization. This work not merely highlights the prospect of novel polyether surfactants, it also suggests the potential of biobased long-chain polyethers for the development of drug delivery systems featuring temperature-controlled release.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信