Chao Zeng, Ruixue Si, Yixuan Zhu, Xiankun Yao, Yueqing Du, Jianlin Zhao, Dong Mao
{"title":"Soliton Molecular Chains Induced by Cascaded Self‐Injection Trapping","authors":"Chao Zeng, Ruixue Si, Yixuan Zhu, Xiankun Yao, Yueqing Du, Jianlin Zhao, Dong Mao","doi":"10.1002/lpor.202500155","DOIUrl":null,"url":null,"abstract":"Soliton molecules (SMs), ranging from the simplest soliton pairs to complex multi‐soliton patterns, serve as versatile carriers for unveiling intricate nonlinear interactions and developing advanced ultrashort laser pulses. Owing to many‐body interactions, SMs composed of multiple solitons display more complex structures and dynamics. Here, a unique type of SMs, termed soliton molecular chains (SMCs), in a passively mode‐locked fiber laser is reported and their formation mechanism—the cascaded self‐injection trapping—is elucidated. The SMCs comprise equally spaced multi‐solitons, increasing progressively with pump strength, and exhibit temporal separation locking and relative phase correlating behaviors. Simulation results fully reproduce and interpret experimental observations, unveiling that the emerging solitons in SMCs are trapped at the local minima of the effective pinning potential in a cascade manner. Specifically, these potential wells originate from the interactions between the emerging solitons and the time‐delayed self‐injection pulses of the preceding soliton generated through an inherent sub‐cavity. Unlike SMs formed through long‐range interactions between solitons and background oscillations, this study demonstrates a novel mechanism that provides an alternative approach to synthesizing SMs with desired patterns by artificially introducing self‐injection pulses.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"45 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202500155","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Soliton molecules (SMs), ranging from the simplest soliton pairs to complex multi‐soliton patterns, serve as versatile carriers for unveiling intricate nonlinear interactions and developing advanced ultrashort laser pulses. Owing to many‐body interactions, SMs composed of multiple solitons display more complex structures and dynamics. Here, a unique type of SMs, termed soliton molecular chains (SMCs), in a passively mode‐locked fiber laser is reported and their formation mechanism—the cascaded self‐injection trapping—is elucidated. The SMCs comprise equally spaced multi‐solitons, increasing progressively with pump strength, and exhibit temporal separation locking and relative phase correlating behaviors. Simulation results fully reproduce and interpret experimental observations, unveiling that the emerging solitons in SMCs are trapped at the local minima of the effective pinning potential in a cascade manner. Specifically, these potential wells originate from the interactions between the emerging solitons and the time‐delayed self‐injection pulses of the preceding soliton generated through an inherent sub‐cavity. Unlike SMs formed through long‐range interactions between solitons and background oscillations, this study demonstrates a novel mechanism that provides an alternative approach to synthesizing SMs with desired patterns by artificially introducing self‐injection pulses.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.