Micron Size NaCrO2 Particles Enable High-loading Dry-processed Electrode for Sodium Ion Batteries

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-21 DOI:10.1002/smll.202501504
Junlin Wu, Wei Tang, Haoqing Yang, Dong Ju Lee, Dapeng Xu, Feng Li, Jianting Qin, Sihyun Kim, Hongpeng Gao, Yuju Jeon, Duc Tran, Yuting Chen, Anthony Mu, Wenjuan Bian, Hongtao Sun, Zheng Chen
{"title":"Micron Size NaCrO2 Particles Enable High-loading Dry-processed Electrode for Sodium Ion Batteries","authors":"Junlin Wu,&nbsp;Wei Tang,&nbsp;Haoqing Yang,&nbsp;Dong Ju Lee,&nbsp;Dapeng Xu,&nbsp;Feng Li,&nbsp;Jianting Qin,&nbsp;Sihyun Kim,&nbsp;Hongpeng Gao,&nbsp;Yuju Jeon,&nbsp;Duc Tran,&nbsp;Yuting Chen,&nbsp;Anthony Mu,&nbsp;Wenjuan Bian,&nbsp;Hongtao Sun,&nbsp;Zheng Chen","doi":"10.1002/smll.202501504","DOIUrl":null,"url":null,"abstract":"<p>Dry-process fabrication using fibrillatable binder is emerging as a promising method to produce high-loading electrodes for energy storage applications, favored by its cost-efficiency and eco-friendliness. While previous studies have demonstrated the advantages of dry process over the traditional slurry method, there remains a gap in understanding how the particle size of active materials influences the mechanical and electrochemical performance of dry electrodes. In this study, four different particle size NaCrO<sub>2</sub> materials (Average size, S-NCO: 0.6 µm, M1-NCO 1.5 µm, M2-NCO: 4.4 µm, and L-NCO: 9.9 µm) are synthesized to investigate the effect of particle size on dry-processed high-loading electrodes. The findings reveal that the larger micron-sized (&gt;4.4 µm) NCO dry films exhibit significantly improved tensile strength and electrochemical performance, primarily ascribed to the low film porosity, abundant inter-particle connection by the binder, comprehensive carbon coverage, and efficient percolation of the conductive pathway. Notably, a full cell incorporated with a high loading (5.2 mAh cm<sup>−</sup><sup>2</sup>) and high active material ratio (96.5 wt.%) L-NCO film electrode demonstrates promising cycling stability and rate capability. These results provide valuable insights regarding the design and fabrication of dry-processed electrodes for future energy storage applications.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 23","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501504","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dry-process fabrication using fibrillatable binder is emerging as a promising method to produce high-loading electrodes for energy storage applications, favored by its cost-efficiency and eco-friendliness. While previous studies have demonstrated the advantages of dry process over the traditional slurry method, there remains a gap in understanding how the particle size of active materials influences the mechanical and electrochemical performance of dry electrodes. In this study, four different particle size NaCrO2 materials (Average size, S-NCO: 0.6 µm, M1-NCO 1.5 µm, M2-NCO: 4.4 µm, and L-NCO: 9.9 µm) are synthesized to investigate the effect of particle size on dry-processed high-loading electrodes. The findings reveal that the larger micron-sized (>4.4 µm) NCO dry films exhibit significantly improved tensile strength and electrochemical performance, primarily ascribed to the low film porosity, abundant inter-particle connection by the binder, comprehensive carbon coverage, and efficient percolation of the conductive pathway. Notably, a full cell incorporated with a high loading (5.2 mAh cm2) and high active material ratio (96.5 wt.%) L-NCO film electrode demonstrates promising cycling stability and rate capability. These results provide valuable insights regarding the design and fabrication of dry-processed electrodes for future energy storage applications.

Abstract Image

Abstract Image

微米尺寸的NaCrO2颗粒使钠离子电池的高负荷干法加工电极成为可能
使用可纤化粘合剂的干法制造正成为一种有前途的方法,用于生产用于储能应用的高负荷电极,其成本效益和生态友好性受到青睐。虽然之前的研究已经证明了干法相对于传统浆料法的优势,但在了解活性材料的粒度如何影响干电极的机械和电化学性能方面仍然存在空白。在本研究中,合成了四种不同粒径的NaCrO2材料(平均粒径,S-NCO: 0.6µm, M1-NCO: 1.5µm, M2-NCO: 4.4µm, L-NCO: 9.9µm),研究了粒径对干法高负荷电极的影响。研究结果表明,较大微米尺寸(>4.4µm)的NCO干膜具有显著提高的拉伸强度和电化学性能,这主要归功于膜孔隙率低、粘结剂丰富的颗粒间连接、全面的碳覆盖以及导电途径的有效渗透。值得注意的是,高负载(5.2 mAh cm−2)和高活性物质比(96.5 wt.%)的L-NCO膜电极具有良好的循环稳定性和倍率能力。这些结果为未来储能应用的干法加工电极的设计和制造提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信