Metal-organic double layer to stabilize selective multi-carbon electrosynthesis

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jian Cheng, Ling Chen, Yanzhi Zhang, Min Wang, Zhangyi Zheng, Lin Jiang, Zhao Deng, Zhihe Wei, Mutian Ma, Likun Xiong, Wei Hua, Daqi Song, Wenxuan Huo, Yuebin Lian, Wenjun Yang, Fenglei Lyu, Yan Jiao, Yang Peng
{"title":"Metal-organic double layer to stabilize selective multi-carbon electrosynthesis","authors":"Jian Cheng, Ling Chen, Yanzhi Zhang, Min Wang, Zhangyi Zheng, Lin Jiang, Zhao Deng, Zhihe Wei, Mutian Ma, Likun Xiong, Wei Hua, Daqi Song, Wenxuan Huo, Yuebin Lian, Wenjun Yang, Fenglei Lyu, Yan Jiao, Yang Peng","doi":"10.1038/s41467-025-59025-5","DOIUrl":null,"url":null,"abstract":"<p>Stable operation of the gas diffusion electrodes is key for industrial-scale electrochemical CO<sub>2</sub> reduction (eCO<sub>2</sub>R). To enhance the electrolytic stability, we shield the Cu-coated gas diffusion electrode with a polycationic sheath via electrospinning and propose a Metal-Organic Double Layer (MODL) scheme to depict the triphasic interface. The as-fabricated electrode exhibits a high multi-carbon Faradaic efficiency of 91.2 ± 3.8%, along with operational stability for over 300 h at 300 mA cm<sup>−2</sup> in an alkaline flow cell. In a membrane electrode assembly with pure water as the anolyte, it further achieves an ethylene Faradaic efficiency over 50% at 200 mA cm<sup>−2</sup>. Mechanistic investigations unveil that replacing hydrated cationic counter ions in the conventional double layer with hydrogen bond-woven polycationic groups in the MODL allows simultaneously tailoring the local electric field and interfacial water structure. This study introduces a molecular-level redesign of the electric double layer in eCO<sub>2</sub>R systems, achieving precisely tunable electrostatic characteristics and tailored chemical microenvironments while leveraging sustainable electrolysis systems to enable highly efficient and stable multi-carbon production.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"34 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59025-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Stable operation of the gas diffusion electrodes is key for industrial-scale electrochemical CO2 reduction (eCO2R). To enhance the electrolytic stability, we shield the Cu-coated gas diffusion electrode with a polycationic sheath via electrospinning and propose a Metal-Organic Double Layer (MODL) scheme to depict the triphasic interface. The as-fabricated electrode exhibits a high multi-carbon Faradaic efficiency of 91.2 ± 3.8%, along with operational stability for over 300 h at 300 mA cm−2 in an alkaline flow cell. In a membrane electrode assembly with pure water as the anolyte, it further achieves an ethylene Faradaic efficiency over 50% at 200 mA cm−2. Mechanistic investigations unveil that replacing hydrated cationic counter ions in the conventional double layer with hydrogen bond-woven polycationic groups in the MODL allows simultaneously tailoring the local electric field and interfacial water structure. This study introduces a molecular-level redesign of the electric double layer in eCO2R systems, achieving precisely tunable electrostatic characteristics and tailored chemical microenvironments while leveraging sustainable electrolysis systems to enable highly efficient and stable multi-carbon production.

Abstract Image

稳定选择性多碳电合成的金属有机双层
气体扩散电极的稳定运行是实现工业规模电化学CO2还原(eCO2R)的关键。为了提高电解稳定性,我们采用静电纺丝的方法在cu包覆的气体扩散电极上包裹一层多阳离子护套,并提出了一种描述三相界面的金属-有机双层(MODL)方案。制备的电极具有高的多碳法拉第效率(91.2±3.8%),在300 mA cm−2的碱性流动电池中具有300小时以上的稳定性。在以纯水为阳极电解质的膜电极组件中,在200 mA cm−2下,乙烯法拉第效率进一步达到50%以上。机理研究表明,在MODL中,用氢键编织的多阳离子基团取代传统双层结构中的水合阳离子反离子,可以同时调整局部电场和界面水结构。本研究介绍了eCO2R系统中双电层的分子水平重新设计,实现了精确可调的静电特性和定制的化学微环境,同时利用可持续的电解系统实现高效稳定的多碳生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信