Katlyn R. Betway-May, William A. Gould, Sarah C. Elmendorf, Jeremy L. May, Robert D. Hollister, Steven F. Oberbauer, Amy Breen, Benjamin J. Crain, Ana Maria Sanchez Cuervo, Marilyn D. Walker, Donald A. Walker
{"title":"Tundra Plant Canopies Gradually Close Over Three Decades While Cryptogams Persist","authors":"Katlyn R. Betway-May, William A. Gould, Sarah C. Elmendorf, Jeremy L. May, Robert D. Hollister, Steven F. Oberbauer, Amy Breen, Benjamin J. Crain, Ana Maria Sanchez Cuervo, Marilyn D. Walker, Donald A. Walker","doi":"10.1111/gcb.70155","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Global climate change phenomena are amplified in Arctic regions, driving rapid changes in the biota. Here, we examine changes in plant community structure over more than 30 years at two sites in arctic Alaska, USA, Imnavait Creek and Toolik Lake, to understand long-term trends in tundra response to changing climate. Vegetation cover was sampled every 4–7 years on permanent 1 m<sup>2</sup> plots spanning a 1 km<sup>2</sup> grid using a point-frame. The vascular plant canopies progressively closed at both locations. Canopy cover, defined here as an encounter of a vascular plant above the ground surface, increased from 63% to 91% at Imnavait Creek and from 63% to 89% at Toolik Lake. Both sites showed steady increases in maximum canopy height, increasing by approximately 50% (8 cm). While cover and height increased to some extent for all vascular plant growth forms, deciduous shrubs and graminoids changed the most. For example, at Imnavait Creek the cover of graminoids more than tripled (particularly in wet meadow plots), increasing by 237%. At Toolik Lake the cover of deciduous shrubs more than doubled (particularly in moist acidic plots), increasing by 145%. Despite the steady closing of the plant canopy, cryptogams (lichens and mosses) persisted; in fact, the cover of lichens increased. These results call into question the dominant dogma that cryptogams will decline with increases in vascular plant abundance and demonstrate the resilience of these understory plants. In addition to overall cover, the diversity of vascular plants increased at one site (Imnavait Creek). In contrast to much of the Arctic, summer air temperatures in the Toolik Lake region have not significantly increased over the 30+ year sampling period; however, winter temperatures increased substantially. Changes in vegetation community structure at Imnavait Creek and Toolik Lake are likely the result of winter warming.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 4","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70155","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Global climate change phenomena are amplified in Arctic regions, driving rapid changes in the biota. Here, we examine changes in plant community structure over more than 30 years at two sites in arctic Alaska, USA, Imnavait Creek and Toolik Lake, to understand long-term trends in tundra response to changing climate. Vegetation cover was sampled every 4–7 years on permanent 1 m2 plots spanning a 1 km2 grid using a point-frame. The vascular plant canopies progressively closed at both locations. Canopy cover, defined here as an encounter of a vascular plant above the ground surface, increased from 63% to 91% at Imnavait Creek and from 63% to 89% at Toolik Lake. Both sites showed steady increases in maximum canopy height, increasing by approximately 50% (8 cm). While cover and height increased to some extent for all vascular plant growth forms, deciduous shrubs and graminoids changed the most. For example, at Imnavait Creek the cover of graminoids more than tripled (particularly in wet meadow plots), increasing by 237%. At Toolik Lake the cover of deciduous shrubs more than doubled (particularly in moist acidic plots), increasing by 145%. Despite the steady closing of the plant canopy, cryptogams (lichens and mosses) persisted; in fact, the cover of lichens increased. These results call into question the dominant dogma that cryptogams will decline with increases in vascular plant abundance and demonstrate the resilience of these understory plants. In addition to overall cover, the diversity of vascular plants increased at one site (Imnavait Creek). In contrast to much of the Arctic, summer air temperatures in the Toolik Lake region have not significantly increased over the 30+ year sampling period; however, winter temperatures increased substantially. Changes in vegetation community structure at Imnavait Creek and Toolik Lake are likely the result of winter warming.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.