Bixbyite-Type Zirconium Tantalum Oxynitride Thin Films as Composition-Tunable High Refractive Index Semiconductors

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Laura I. Wagner, Alessia Canever, Elise Sirotti, Chang-Ming Jiang, Frans Munnik, Verena Streibel, Ian D. Sharp
{"title":"Bixbyite-Type Zirconium Tantalum Oxynitride Thin Films as Composition-Tunable High Refractive Index Semiconductors","authors":"Laura I. Wagner,&nbsp;Alessia Canever,&nbsp;Elise Sirotti,&nbsp;Chang-Ming Jiang,&nbsp;Frans Munnik,&nbsp;Verena Streibel,&nbsp;Ian D. Sharp","doi":"10.1002/admi.202400745","DOIUrl":null,"url":null,"abstract":"<p>Multinary nitrides and oxynitrides offer a range of tunable structural and optoelectronic properties. However, much of this vast compositional space remains to be explored due to the challenges associated with their synthesis. Here, reactive sputter deposition is used to synthesize isostructural polycrystalline zirconium tantalum oxynitride thin films with varying cation ratios and systematically explore their structural and optical properties. All films possess the cubic bixbyite-type structure and <i>n</i>-type semiconducting character, as well as composition-tunable optical bandgaps in the visible range. Furthermore, these compounds exhibit remarkably high refractive indices that exceed a value 2.8 in the non-absorbing sub-bandgap region and reach 3.2 at 589 nm for Ta-rich compositions. Photoemission spectroscopy reveals non-uniform shifts in electron binding energies that indicate a complex interplay of structural and compositional effects on interatomic bonding. In addition to being high-index materials, the measured band edge positions of the films align favorably with the water oxidation and reduction potentials. Thus, this tunable materials family offers prospects for diverse optoelectronics application, including for production of photonic metamaterials and for solar water splitting.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 8","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400745","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400745","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multinary nitrides and oxynitrides offer a range of tunable structural and optoelectronic properties. However, much of this vast compositional space remains to be explored due to the challenges associated with their synthesis. Here, reactive sputter deposition is used to synthesize isostructural polycrystalline zirconium tantalum oxynitride thin films with varying cation ratios and systematically explore their structural and optical properties. All films possess the cubic bixbyite-type structure and n-type semiconducting character, as well as composition-tunable optical bandgaps in the visible range. Furthermore, these compounds exhibit remarkably high refractive indices that exceed a value 2.8 in the non-absorbing sub-bandgap region and reach 3.2 at 589 nm for Ta-rich compositions. Photoemission spectroscopy reveals non-uniform shifts in electron binding energies that indicate a complex interplay of structural and compositional effects on interatomic bonding. In addition to being high-index materials, the measured band edge positions of the films align favorably with the water oxidation and reduction potentials. Thus, this tunable materials family offers prospects for diverse optoelectronics application, including for production of photonic metamaterials and for solar water splitting.

Abstract Image

bixbyite型氧化锆钽氮化薄膜作为成分可调高折射率半导体
多氮化物和氧氮化物提供了一系列可调的结构和光电子特性。然而,由于与合成相关的挑战,这一巨大的组合空间仍有待探索。本文采用反应溅射沉积的方法合成了具有不同阳离子比的等结构多晶氮化锆钽薄膜,并对其结构和光学性能进行了系统的研究。所有薄膜都具有立方bixbyite型结构和n型半导体特性,并且在可见光范围内具有成分可调的光学带隙。此外,这些化合物表现出非常高的折射率,在非吸收亚带隙区域超过2.8,在589 nm处达到3.2。光电发射光谱揭示了电子结合能的非均匀变化,表明结构和成分对原子间键的复杂相互作用。除了是高折射率材料外,薄膜的测量带边缘位置与水氧化和还原电位有利地对齐。因此,这种可调谐材料家族为各种光电子应用提供了前景,包括光子超材料的生产和太阳能水分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信