A Study on the Heat Transfer Performance of a Thermal Storage Heating Device

IF 3.5 3区 工程技术 Q3 ENERGY & FUELS
Chi Zhang, Rongxing Zhou, Guoqing Zhang, Youpeng Chen, Chengzhao Yang
{"title":"A Study on the Heat Transfer Performance of a Thermal Storage Heating Device","authors":"Chi Zhang,&nbsp;Rongxing Zhou,&nbsp;Guoqing Zhang,&nbsp;Youpeng Chen,&nbsp;Chengzhao Yang","doi":"10.1002/ese3.2082","DOIUrl":null,"url":null,"abstract":"<p>Recognizing the challenges faced by electric busses that must utilize a portion of their battery energy to heat the passenger compartment in colder locations, thus reducing their driving range, this work has devised an effective solution to this issue. A compact single-row thermal storage system was designed to fulfill the heating needs of electric busses. Thermal resistance investigation demonstrated that this device provides exceptional insulating efficacy and heat dissipation rate. This study utilizes an aluminum-silicon alloy as the phase transition material for heat storage, with 316 stainless steel as the encapsulating medium. Air serves as the heat exchange medium, and a numerical model has been established. A small-scale experimental apparatus has been established to verify the accuracy of the numerical model. The study offers a comprehensive examination of the flow dynamics of the heat exchange fluid in storage tanks of varying diameters, the solidification pattern of the aluminum-silicon alloy phase change material, and the attributes of temperature distribution. Under equal inlet temperature and flow rate conditions, increased tank diameters lead to prolonged solidification durations for the aluminum-silicon alloy, elevated output temperatures, and a more heterogeneous temperature distribution inside the thermal storage medium. Elevating the inlet temperature in tanks of identical diameter results in increased exit temperatures and extended solidification durations for the aluminum-silicon alloy. Conversely, maintaining a constant intake temperature while augmenting the inlet flow rate reduces the output temperature and decreases the solidification duration of the aluminum-silicon alloy.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 4","pages":"1595-1608"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2082","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2082","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Recognizing the challenges faced by electric busses that must utilize a portion of their battery energy to heat the passenger compartment in colder locations, thus reducing their driving range, this work has devised an effective solution to this issue. A compact single-row thermal storage system was designed to fulfill the heating needs of electric busses. Thermal resistance investigation demonstrated that this device provides exceptional insulating efficacy and heat dissipation rate. This study utilizes an aluminum-silicon alloy as the phase transition material for heat storage, with 316 stainless steel as the encapsulating medium. Air serves as the heat exchange medium, and a numerical model has been established. A small-scale experimental apparatus has been established to verify the accuracy of the numerical model. The study offers a comprehensive examination of the flow dynamics of the heat exchange fluid in storage tanks of varying diameters, the solidification pattern of the aluminum-silicon alloy phase change material, and the attributes of temperature distribution. Under equal inlet temperature and flow rate conditions, increased tank diameters lead to prolonged solidification durations for the aluminum-silicon alloy, elevated output temperatures, and a more heterogeneous temperature distribution inside the thermal storage medium. Elevating the inlet temperature in tanks of identical diameter results in increased exit temperatures and extended solidification durations for the aluminum-silicon alloy. Conversely, maintaining a constant intake temperature while augmenting the inlet flow rate reduces the output temperature and decreases the solidification duration of the aluminum-silicon alloy.

Abstract Image

蓄热式加热装置的传热性能研究
考虑到电动巴士必须在较冷的环境中利用部分电池能量来加热乘客舱,从而减少其行驶里程,这项工作设计了一个有效的解决方案。设计了一种紧凑的单排蓄热系统,以满足电动公交车的供暖需求。热阻研究表明,该器件具有优异的绝缘效率和散热率。本研究采用铝硅合金作为储热相变材料,316不锈钢作为封装介质。以空气为换热介质,建立了数值模型。建立了小型实验装置,验证了数值模型的准确性。本文对不同直径储槽内换热流体的流动动力学、铝硅合金相变材料的凝固规律和温度分布特性进行了全面的研究。在相同的进口温度和流量条件下,增大的储罐直径导致铝硅合金的凝固时间延长,输出温度升高,并且储热介质内部的温度分布更加不均匀。在相同直径的储罐中,提高进口温度会导致铝硅合金出口温度的升高和凝固时间的延长。相反,在增加进口流量的同时保持恒定的进口温度会降低铝硅合金的输出温度并缩短其凝固时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信