Comprehensive Investigations on Split Injection System Using Diesel/Biodiesel Blends Powered Common Rail Direct Injection Engine: Multi-Objective Optimization
Gowthaman Saba, Prabhu Paramasivam, Thangavel Kandasamy, Anu Karthi Swaghatha, Hasan Sh. Majdi, Faisal M. Alfaisal, Shamsad Alam, Abinet Gosaye Ayanie
{"title":"Comprehensive Investigations on Split Injection System Using Diesel/Biodiesel Blends Powered Common Rail Direct Injection Engine: Multi-Objective Optimization","authors":"Gowthaman Saba, Prabhu Paramasivam, Thangavel Kandasamy, Anu Karthi Swaghatha, Hasan Sh. Majdi, Faisal M. Alfaisal, Shamsad Alam, Abinet Gosaye Ayanie","doi":"10.1002/ese3.2087","DOIUrl":null,"url":null,"abstract":"<p>A combined effect of injection pressure (IP) and split injection mechanism (SIM) on performance, combustion, and emission characteristics of a CRDI engine operated with diesel-lemongrass biodiesel (LGB20) blend was analyzed and optimized the IP from the experimental results using RSM and ANOVA. The CRDI engine was tested under SIM conditions at various injection pressures (IPs) of 200, 300, 400, 500, and 600 bar, with limitations observed concerning specific engine characteristics. The SIM is accomplished by splitting the injection into two phases during the compression stroke. It was noted that the engine characteristics were improved concerning IPs in SIM by minimizing the intensity of heterogeneity of the mixture. The CRDI engine with 600 bar pressure registered higher in-cylinder pressure, heat release rate, and brake thermal efficiency (BTE) with lower specific fuel consumption (SFC) when compared to the engine operated with other IPs. It also registered lower exhaust pollutants except oxides of nitrogen (NOx) and carbon dioxides (CO<sub>2</sub>) due to better combustion at 600 bar pressure. The CRDI engine was operated efficiently at 64.61% load with 600 bar IP and recorded engine parameters as 29.94% of BTE, 0.373 kg/kWh of SFC, 0.64% of CO, 4.55% of CO<sub>2</sub>, 244 ppm of NOx, 37.2 ppm of HC, and 64.58 HSU of smoke emissions. This study concluded that 600 bar IP is the optimum for better engine characteristics of CRDI engines operated with LGB20 fuel.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 4","pages":"1662-1678"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2087","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2087","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
A combined effect of injection pressure (IP) and split injection mechanism (SIM) on performance, combustion, and emission characteristics of a CRDI engine operated with diesel-lemongrass biodiesel (LGB20) blend was analyzed and optimized the IP from the experimental results using RSM and ANOVA. The CRDI engine was tested under SIM conditions at various injection pressures (IPs) of 200, 300, 400, 500, and 600 bar, with limitations observed concerning specific engine characteristics. The SIM is accomplished by splitting the injection into two phases during the compression stroke. It was noted that the engine characteristics were improved concerning IPs in SIM by minimizing the intensity of heterogeneity of the mixture. The CRDI engine with 600 bar pressure registered higher in-cylinder pressure, heat release rate, and brake thermal efficiency (BTE) with lower specific fuel consumption (SFC) when compared to the engine operated with other IPs. It also registered lower exhaust pollutants except oxides of nitrogen (NOx) and carbon dioxides (CO2) due to better combustion at 600 bar pressure. The CRDI engine was operated efficiently at 64.61% load with 600 bar IP and recorded engine parameters as 29.94% of BTE, 0.373 kg/kWh of SFC, 0.64% of CO, 4.55% of CO2, 244 ppm of NOx, 37.2 ppm of HC, and 64.58 HSU of smoke emissions. This study concluded that 600 bar IP is the optimum for better engine characteristics of CRDI engines operated with LGB20 fuel.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.