A Comprehensive Experimental Liquid-Level Control System for Advancing Fault Diagnosis Research Innovation: Data, Models, and Procedures

Hilina Workneh, Ioannis Raptis
{"title":"A Comprehensive Experimental Liquid-Level Control System for Advancing Fault Diagnosis Research Innovation: Data, Models, and Procedures","authors":"Hilina Workneh,&nbsp;Ioannis Raptis","doi":"10.1002/adc2.70011","DOIUrl":null,"url":null,"abstract":"<p>This work addresses the development of a laboratory benchmark system designed for testing and comparing model-based fault diagnosis algorithms. We selected a liquid-level control system with three interconnected storage tanks as the physical process. We provide a detailed description of the first-principles mathematical modeling for deriving the state-space equations of the physical process. System identification was performed using elementary least squares to estimate the model parameters from input/output data. The primary contribution of this paper is the presentation of an open-access repository containing extensive sensor and actuator data from experiments on a physical process experiencing faults. This repository enables researchers to validate their algorithms using sensory data from a real-world process subjected to realistic uncertainty and measurement challenges. The validation of the identified dynamic model and its agreement with the collected data demonstrate the capabilities of the proposed system for testing and comparing model-based fault detection algorithms.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.70011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Control for Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adc2.70011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work addresses the development of a laboratory benchmark system designed for testing and comparing model-based fault diagnosis algorithms. We selected a liquid-level control system with three interconnected storage tanks as the physical process. We provide a detailed description of the first-principles mathematical modeling for deriving the state-space equations of the physical process. System identification was performed using elementary least squares to estimate the model parameters from input/output data. The primary contribution of this paper is the presentation of an open-access repository containing extensive sensor and actuator data from experiments on a physical process experiencing faults. This repository enables researchers to validate their algorithms using sensory data from a real-world process subjected to realistic uncertainty and measurement challenges. The validation of the identified dynamic model and its agreement with the collected data demonstrate the capabilities of the proposed system for testing and comparing model-based fault detection algorithms.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信