{"title":"A Deep Learning-Based Surrogate Model for Seismic Data Assimilation in Fault Activation Modeling","authors":"Caterina Millevoi, Claudia Zoccarato, Massimiliano Ferronato","doi":"10.1002/nme.70040","DOIUrl":null,"url":null,"abstract":"<p>Assessing the safety and environmental impacts of subsurface resource exploitation and management is critical and requires robust geomechanical modeling. However, uncertainties stemming from model assumptions, intrinsic variability of governing parameters, and data errors challenge the reliability of predictions. In the absence of direct measurements, inverse modeling and stochastic data assimilation methods can offer reliable solutions, but in complex and large-scale settings, the computational expense can become prohibitive. To address these challenges, this paper presents a deep learning-based surrogate model (SurMoDeL) designed for seismic data assimilation in fault activation modeling. The surrogate model leverages neural networks to provide simplified yet accurate representations of complex geophysical systems, enabling faster simulations and analyses essential for uncertainty quantification. The work proposes two different methods to integrate an understanding of fault behavior into the model, thereby enhancing the accuracy of its predictions. The application of the proxy model to integrate seismic data through effective data assimilation techniques efficiently constrains the uncertain parameters, thus bridging the gap between theoretical models and real-world observations.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.70040","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70040","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Assessing the safety and environmental impacts of subsurface resource exploitation and management is critical and requires robust geomechanical modeling. However, uncertainties stemming from model assumptions, intrinsic variability of governing parameters, and data errors challenge the reliability of predictions. In the absence of direct measurements, inverse modeling and stochastic data assimilation methods can offer reliable solutions, but in complex and large-scale settings, the computational expense can become prohibitive. To address these challenges, this paper presents a deep learning-based surrogate model (SurMoDeL) designed for seismic data assimilation in fault activation modeling. The surrogate model leverages neural networks to provide simplified yet accurate representations of complex geophysical systems, enabling faster simulations and analyses essential for uncertainty quantification. The work proposes two different methods to integrate an understanding of fault behavior into the model, thereby enhancing the accuracy of its predictions. The application of the proxy model to integrate seismic data through effective data assimilation techniques efficiently constrains the uncertain parameters, thus bridging the gap between theoretical models and real-world observations.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.