{"title":"Controls of Grain Breakage on Shear Band Morphology and Porosity Evolution in Fault Gouges","authors":"Qiang Li, Jianye Chen, Chongyuan Zhang, Liang Yuan, Derek Elsworth, Quan Gan, Fengshou Zhang","doi":"10.1029/2024JB029255","DOIUrl":null,"url":null,"abstract":"<p>Gouge in fault zones generally undergoes grain breakage during shear slip events, resulting in changes in both shear mode and pore structure. We establish a discrete element model representing shearing of granular fault gouge for increasing normal stresses but constant shear velocity (<i>v</i> = 6 μm/s) to investigate the effects of grain breakage on shear band development and the evolution of fault friction and porosity. An increase in normal stress increases frictional strength by ∼20% accompanied by many small slip events triggered by grain breakage. The fragments generated by grain breakage reduce mean grain size and shift the grain size. Dilation and an absence of comminution under low normal stress increase porosity countered by high normal stress developing rapid compaction and grain breakage and decreasing porosity. We propose a concept of porosity evolution linked to volumetric strain. An increase in normal stress results in the principal breakage mechanism evolving from low efficiency abrasion to high efficiency splitting with grain size distribution converging to fractal distributions observed in nature. Heterogeneous grain breakage drives local reduction in porosity, the redistribution of contact stresses and realignment of force-chains, changing the slip pattern and microstructural characteristics through shear band development. At low normal stress, the grain deformation is mainly accommodated by slipping and rolling and the shear bands are dominated by <i>Y</i> shears. With the increase in normal stress, grain breakage promotes the development of the more highly inclined <i>R</i> shears.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029255","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gouge in fault zones generally undergoes grain breakage during shear slip events, resulting in changes in both shear mode and pore structure. We establish a discrete element model representing shearing of granular fault gouge for increasing normal stresses but constant shear velocity (v = 6 μm/s) to investigate the effects of grain breakage on shear band development and the evolution of fault friction and porosity. An increase in normal stress increases frictional strength by ∼20% accompanied by many small slip events triggered by grain breakage. The fragments generated by grain breakage reduce mean grain size and shift the grain size. Dilation and an absence of comminution under low normal stress increase porosity countered by high normal stress developing rapid compaction and grain breakage and decreasing porosity. We propose a concept of porosity evolution linked to volumetric strain. An increase in normal stress results in the principal breakage mechanism evolving from low efficiency abrasion to high efficiency splitting with grain size distribution converging to fractal distributions observed in nature. Heterogeneous grain breakage drives local reduction in porosity, the redistribution of contact stresses and realignment of force-chains, changing the slip pattern and microstructural characteristics through shear band development. At low normal stress, the grain deformation is mainly accommodated by slipping and rolling and the shear bands are dominated by Y shears. With the increase in normal stress, grain breakage promotes the development of the more highly inclined R shears.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.