Alessandro Rossi, Ian Buchanan, Alberto Astolfo, Martyna Michalska, Daniel Briglin, Anton Charman, Daniel Josell, Alessandro Olivo, Ioannis Papakonstantinou
{"title":"Fabrication of Ultra-Thick Masks for X-Ray Phase Contrast Imaging at Higher Energy","authors":"Alessandro Rossi, Ian Buchanan, Alberto Astolfo, Martyna Michalska, Daniel Briglin, Anton Charman, Daniel Josell, Alessandro Olivo, Ioannis Papakonstantinou","doi":"10.1002/admi.202400749","DOIUrl":null,"url":null,"abstract":"<p>X-ray phase contrast imaging (XPCI) provides higher sensitivity to contrast between low absorbing objects that can be invisible to conventional attenuation-based X-ray imaging. XPCI's main application is so far focused on medical areas at relatively low energies (<i><</i> 100 keV). The translation to higher energy for industrial applications, where energies above 150 keV are often needed, is hindered by the lack of masks/gratings with sufficiently thick gold septa. Fabricating such structures with apertures of tens of micrometers becomes difficult at depths greater than a few hundreds of micrometers due to aspect ratio-dependent effects such as anisotropic etching, and preferential gold (Au) deposition at the top of the apertures. In this work, these difficulties are overcome by Deep Reactive Ion Etching optimized by a stepped parameters approach and bismuth-mediated superconformal filling of Au, ultimately resulting in 500 µm deep silicon masks filled with Au at bulk density. The obtained masks, tested in an Edge Illumination XPCI system with a conventional source and a photon-counting detector, show good agreement with simulations at different energy thresholds. They also demonstrate a higher phase sensitivity for highly absorbing objects when compared to lower aspect ratio masks, proving their potential for industrial non-destructive testing.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 8","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400749","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400749","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
X-ray phase contrast imaging (XPCI) provides higher sensitivity to contrast between low absorbing objects that can be invisible to conventional attenuation-based X-ray imaging. XPCI's main application is so far focused on medical areas at relatively low energies (< 100 keV). The translation to higher energy for industrial applications, where energies above 150 keV are often needed, is hindered by the lack of masks/gratings with sufficiently thick gold septa. Fabricating such structures with apertures of tens of micrometers becomes difficult at depths greater than a few hundreds of micrometers due to aspect ratio-dependent effects such as anisotropic etching, and preferential gold (Au) deposition at the top of the apertures. In this work, these difficulties are overcome by Deep Reactive Ion Etching optimized by a stepped parameters approach and bismuth-mediated superconformal filling of Au, ultimately resulting in 500 µm deep silicon masks filled with Au at bulk density. The obtained masks, tested in an Edge Illumination XPCI system with a conventional source and a photon-counting detector, show good agreement with simulations at different energy thresholds. They also demonstrate a higher phase sensitivity for highly absorbing objects when compared to lower aspect ratio masks, proving their potential for industrial non-destructive testing.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.