{"title":"Facial Expression Recognition Method Based on Octonion Orthogonal Feature Extraction and Octonion Vision Transformer","authors":"Yuan Tian, Hang Cai, Huang Yao, Di Chen","doi":"10.1155/int/6388642","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In the field of artificial intelligence, facial expression recognition (FER) in natural scenes is a challenging topic. In recent years, vision transformer (ViT) models have been applied to FER tasks. The direct use of the original ViT structure consumes a lot of computational resources and longer training time. To overcome these problems, we propose a FER method based on octonion orthogonal feature extraction and octonion ViT. First, to reduce feature redundancy, we propose an orthogonal feature decomposition method to map the extracted features onto seven orthogonal sub-features. Then, an octonion orthogonal representation method is introduced to correlate the orthogonal features, maintain the intrinsic dependencies between different orthogonal features, and enhance the model’s ability to extract features. Finally, an octonion ViT is presented, which reduces the number of parameters to one-eighth of ViT while improving the accuracy of FER. Experimental results on three commonly used facial expression datasets show that the proposed method outperforms several state-of-the-art models with a significant reduction in the number of parameters.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/6388642","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/6388642","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of artificial intelligence, facial expression recognition (FER) in natural scenes is a challenging topic. In recent years, vision transformer (ViT) models have been applied to FER tasks. The direct use of the original ViT structure consumes a lot of computational resources and longer training time. To overcome these problems, we propose a FER method based on octonion orthogonal feature extraction and octonion ViT. First, to reduce feature redundancy, we propose an orthogonal feature decomposition method to map the extracted features onto seven orthogonal sub-features. Then, an octonion orthogonal representation method is introduced to correlate the orthogonal features, maintain the intrinsic dependencies between different orthogonal features, and enhance the model’s ability to extract features. Finally, an octonion ViT is presented, which reduces the number of parameters to one-eighth of ViT while improving the accuracy of FER. Experimental results on three commonly used facial expression datasets show that the proposed method outperforms several state-of-the-art models with a significant reduction in the number of parameters.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.