Emile Michels, Kayleigh Hansford, Sarah E. Perkins, Robbie A. McDonald, Jolyon M. Medlock, Barbara Tschirren
{"title":"The Release of Non-Native Gamebirds Is Associated With Amplified Zoonotic Disease Risk","authors":"Emile Michels, Kayleigh Hansford, Sarah E. Perkins, Robbie A. McDonald, Jolyon M. Medlock, Barbara Tschirren","doi":"10.1111/ele.70115","DOIUrl":null,"url":null,"abstract":"<p>Spillback—where non-native species increase native pathogen prevalence—is potentially an important mechanism by which non-natives contribute to zoonotic disease emergence. However, spillback has not yet been directly demonstrated because it is difficult to disentangle from confounding factors which correlate with non-native species abundance and native pathogen prevalence. Here, we capitalise on replicated, quasi-experimental releases of non-native pheasants (<i>Phasianus colchicus</i>) to compare vector abundance and native pathogen prevalence between sites with similar local conditions but different non-native densities. Prevalence of <i>Borrelia</i> spp. (the causative agent of Lyme disease) in questing ticks was almost 2.5x higher in woods where pheasants are released compared to control woods, with a particularly strong effect on <i>Borrelia garinii,</i> a bird specialist genospecies. Furthermore, adult (but not nymphal) ticks tended to be more abundant at pheasant-release woods. This work provides evidence that non-native species can impact zoonotic pathogen prevalence via spillback in ecologically relevant contexts.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 4","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70115","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70115","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spillback—where non-native species increase native pathogen prevalence—is potentially an important mechanism by which non-natives contribute to zoonotic disease emergence. However, spillback has not yet been directly demonstrated because it is difficult to disentangle from confounding factors which correlate with non-native species abundance and native pathogen prevalence. Here, we capitalise on replicated, quasi-experimental releases of non-native pheasants (Phasianus colchicus) to compare vector abundance and native pathogen prevalence between sites with similar local conditions but different non-native densities. Prevalence of Borrelia spp. (the causative agent of Lyme disease) in questing ticks was almost 2.5x higher in woods where pheasants are released compared to control woods, with a particularly strong effect on Borrelia garinii, a bird specialist genospecies. Furthermore, adult (but not nymphal) ticks tended to be more abundant at pheasant-release woods. This work provides evidence that non-native species can impact zoonotic pathogen prevalence via spillback in ecologically relevant contexts.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.