Imprint of Operator Ordering on the Quantum Nature of DeWitt-regular Black Holes

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Harpreet Singh, Malay K. Nandy
{"title":"Imprint of Operator Ordering on the Quantum Nature of DeWitt-regular Black Holes","authors":"Harpreet Singh,&nbsp;Malay K. Nandy","doi":"10.1007/s10773-025-05982-y","DOIUrl":null,"url":null,"abstract":"<div><p>In making a transition from classical to quantum mechanics in the canonical framework, operator ordering in the Hamiltonian of a non-trivial system plays a crucial role. Such is the case in formulating a Wheeler-DeWitt equation from the classical Hamiltonian of a black hole. In this paper, we therefore study the critical role of operator ordering controlled by a parameter while obtaining the Wheeler-DeWitt equation from a Kantowski-Sachs representation of the black hole interior. Upon solving the Wheeler-DeWitt equation, we find that the solutions reveal the critical role played by operator ordering. Notably, the solutions uncover the following important consequences: (1) The black hole interior wave function categorizes itself into three different classes, with wide domains for the operator ordering parameter in consistency with the DeWitt criterion. (2) The DeWitt-regular, asymptotically safe, wave functions are intimately related with the operator ordering as they carry imprints of the parameter controlling operator ordering. (3) The DeWitt-regular wave functions give finite and well-behaved expectation values of the Kretschmann curvature in the vicinity of the black hole singularity with reduced but still infinite extent for the operator ordering parameter. We thus find that the black hole singularity can be resolved with infinite ways of choosing operator ordering.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05982-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In making a transition from classical to quantum mechanics in the canonical framework, operator ordering in the Hamiltonian of a non-trivial system plays a crucial role. Such is the case in formulating a Wheeler-DeWitt equation from the classical Hamiltonian of a black hole. In this paper, we therefore study the critical role of operator ordering controlled by a parameter while obtaining the Wheeler-DeWitt equation from a Kantowski-Sachs representation of the black hole interior. Upon solving the Wheeler-DeWitt equation, we find that the solutions reveal the critical role played by operator ordering. Notably, the solutions uncover the following important consequences: (1) The black hole interior wave function categorizes itself into three different classes, with wide domains for the operator ordering parameter in consistency with the DeWitt criterion. (2) The DeWitt-regular, asymptotically safe, wave functions are intimately related with the operator ordering as they carry imprints of the parameter controlling operator ordering. (3) The DeWitt-regular wave functions give finite and well-behaved expectation values of the Kretschmann curvature in the vicinity of the black hole singularity with reduced but still infinite extent for the operator ordering parameter. We thus find that the black hole singularity can be resolved with infinite ways of choosing operator ordering.

算子序在dewitt -正则黑洞量子性质上的印记
在经典框架下从经典力学到量子力学的过渡中,非平凡系统的哈密顿量中的算子序起着至关重要的作用。这就是从黑洞的经典哈密顿量推导出惠勒-德维特方程的情况。因此,在本文中,我们研究了由参数控制的算子排序在从黑洞内部的Kantowski-Sachs表示得到Wheeler-DeWitt方程时所起的关键作用。通过求解Wheeler-DeWitt方程,我们发现解揭示了算子排序所起的关键作用。值得注意的是,这些解揭示了以下重要结果:(1)黑洞内部波函数将自身分为三种不同的类别,具有与DeWitt准则一致的算子排序参数的宽域。(2) dewitt -正则、渐近安全的波函数与算子序密切相关,因为它们带有参数控制算子序的印记。(3) dewitt -正则波函数给出了黑洞奇点附近Kretschmann曲率的有限且表现良好的期望值,算子序参量的范围减小但仍然是无限的。由此我们发现黑洞奇点可以用无限种选择算子排序的方法来解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信