Xiao Li , Xue-wei Wang , Xiao-Ran Wen , Shi-qi Li , Kun Zhang , Jia-cheng Yu , Yan Guo
{"title":"Crystallinity-controlled oxygen vacancies of SmMn2O5 as an oxygen reduction catalyst for Zn-air battery","authors":"Xiao Li , Xue-wei Wang , Xiao-Ran Wen , Shi-qi Li , Kun Zhang , Jia-cheng Yu , Yan Guo","doi":"10.1016/j.jelechem.2025.119129","DOIUrl":null,"url":null,"abstract":"<div><div>Mn-based mullite, with its unique structure featuring two distinct Mn coordination environments, has garnered significant attention in the research and development of oxygen reduction reaction (ORR) catalysts. The nucleation and growth of SmMn<sub>2</sub>O<sub>5</sub> were influenced by controlling the hydrothermal reaction time and temperature, resulting in SmMn<sub>2</sub>O<sub>5</sub> with varying degrees of crystallinity. With the increase of hydrothermal temperature and time, the crystallinity of SmMn<sub>2</sub>O<sub>5</sub> is enhanced, and the morphology changes from an amorphous lamellar structure to a finer and longer nanorod structure. SmMn<sub>2</sub>O<sub>5</sub> with an amorphous lamellar structure prepared at 150 °C for 3 h has a maximum specific surface area of 355.35 m<sup>2</sup> g<sup>−1</sup>. The electrochemical results indicate that the amorphous lamellar SmMn<sub>2</sub>O<sub>5</sub> shows excellent ORR performance with a half-wave potential of 0.76 V. This is mainly due to the fact that crystallinity induces an increase in the number of oxygen vacancies, which increases the number of active sites and changes the valence state of Mn. The amorphous lamellar SmMn<sub>2</sub>O<sub>5</sub> was used as a cathode in zinc-air batteries with a power density of 119 mW/cm<sup>2</sup>, showing potential applications. This work demonstrates an effective and simple strategy for increasing the number of oxygen vacancies in SmMn<sub>2</sub>O<sub>5</sub>, which helps the development and application of SmMn<sub>2</sub>O<sub>5</sub> in the field of electrocatalysis.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"988 ","pages":"Article 119129"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665725002036","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mn-based mullite, with its unique structure featuring two distinct Mn coordination environments, has garnered significant attention in the research and development of oxygen reduction reaction (ORR) catalysts. The nucleation and growth of SmMn2O5 were influenced by controlling the hydrothermal reaction time and temperature, resulting in SmMn2O5 with varying degrees of crystallinity. With the increase of hydrothermal temperature and time, the crystallinity of SmMn2O5 is enhanced, and the morphology changes from an amorphous lamellar structure to a finer and longer nanorod structure. SmMn2O5 with an amorphous lamellar structure prepared at 150 °C for 3 h has a maximum specific surface area of 355.35 m2 g−1. The electrochemical results indicate that the amorphous lamellar SmMn2O5 shows excellent ORR performance with a half-wave potential of 0.76 V. This is mainly due to the fact that crystallinity induces an increase in the number of oxygen vacancies, which increases the number of active sites and changes the valence state of Mn. The amorphous lamellar SmMn2O5 was used as a cathode in zinc-air batteries with a power density of 119 mW/cm2, showing potential applications. This work demonstrates an effective and simple strategy for increasing the number of oxygen vacancies in SmMn2O5, which helps the development and application of SmMn2O5 in the field of electrocatalysis.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.