MicroRNA profiling in pancreatic cancer and chronic pancreatitis: Novel insights and pathway analysis

IF 0.5 Q4 GENETICS & HEREDITY
Hossein Azadinejad , Mohammad Farhadi Rad , Ali Babaeizad , Ali Samadi
{"title":"MicroRNA profiling in pancreatic cancer and chronic pancreatitis: Novel insights and pathway analysis","authors":"Hossein Azadinejad ,&nbsp;Mohammad Farhadi Rad ,&nbsp;Ali Babaeizad ,&nbsp;Ali Samadi","doi":"10.1016/j.humgen.2025.201410","DOIUrl":null,"url":null,"abstract":"<div><div>Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), poses significant prognostic challenges, with a 5-year survival rate of around 10 %. Early detection remains elusive due to nonspecific symptoms and the disease's aggressive nature. Chronic pancreatitis (CP) significantly increases the risk of PDAC, with studies indicating a 14-fold increase. This paper investigates the role of microRNAs (miRNAs) in the molecular pathogenesis of CP and PDAC, employing a comprehensive analysis of microarray datasets to identify differentially expressed miRNAs (DEMs) among these conditions and healthy controls. Utilizing bioinformatics tools such as Weighted Gene Co-Expression Network Analysis and functional enrichment analysis, we highlighted key signaling pathways, including PI3K/AKT/mTOR and TNF-α via NF-κB, crucial to both diseases. We identified critical genes—AKT1, TP53, EGFR, MYC, and CTNNB1—that play significant roles in PDAC and CP. Furthermore, we developed a Support Vector Machine model to classify PDAC, CP, and healthy individuals, achieving an accuracy of 88.3 %. Our findings pinpoint several DEMs with considerable diagnostic potential, particularly hsa-miR-130b and hsa-miR-148a for PDAC, hsa-miR-192 and hsa-miR-150 for CP, and hsa-miR-222 for differentiating PDAC from CP. These results underscore the promise of miRNAs as biomarkers and therapeutic targets, warranting further validation to improve diagnostic approaches and patient outcomes.</div></div>","PeriodicalId":29686,"journal":{"name":"Human Gene","volume":"44 ","pages":"Article 201410"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773044125000361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), poses significant prognostic challenges, with a 5-year survival rate of around 10 %. Early detection remains elusive due to nonspecific symptoms and the disease's aggressive nature. Chronic pancreatitis (CP) significantly increases the risk of PDAC, with studies indicating a 14-fold increase. This paper investigates the role of microRNAs (miRNAs) in the molecular pathogenesis of CP and PDAC, employing a comprehensive analysis of microarray datasets to identify differentially expressed miRNAs (DEMs) among these conditions and healthy controls. Utilizing bioinformatics tools such as Weighted Gene Co-Expression Network Analysis and functional enrichment analysis, we highlighted key signaling pathways, including PI3K/AKT/mTOR and TNF-α via NF-κB, crucial to both diseases. We identified critical genes—AKT1, TP53, EGFR, MYC, and CTNNB1—that play significant roles in PDAC and CP. Furthermore, we developed a Support Vector Machine model to classify PDAC, CP, and healthy individuals, achieving an accuracy of 88.3 %. Our findings pinpoint several DEMs with considerable diagnostic potential, particularly hsa-miR-130b and hsa-miR-148a for PDAC, hsa-miR-192 and hsa-miR-150 for CP, and hsa-miR-222 for differentiating PDAC from CP. These results underscore the promise of miRNAs as biomarkers and therapeutic targets, warranting further validation to improve diagnostic approaches and patient outcomes.

Abstract Image

胰腺癌和慢性胰腺炎的MicroRNA分析:新的见解和途径分析
胰腺癌,特别是胰腺导管腺癌(PDAC),具有显著的预后挑战,其5年生存率约为10%。由于非特异性症状和疾病的侵袭性,早期发现仍然难以捉摸。慢性胰腺炎(CP)显著增加PDAC的风险,研究表明其增加了14倍。本文研究了microRNAs (miRNAs)在CP和PDAC的分子发病机制中的作用,采用微阵列数据集的综合分析来识别这些疾病和健康对照之间差异表达的miRNAs (DEMs)。利用加权基因共表达网络分析和功能富集分析等生物信息学工具,我们强调了关键的信号通路,包括PI3K/AKT/mTOR和通过NF-κB的TNF-α,对这两种疾病都至关重要。我们确定了在PDAC和CP中发挥重要作用的关键基因——akt1、TP53、EGFR、MYC和ctnnb1。此外,我们开发了一个支持向量机模型来分类PDAC、CP和健康个体,准确率达到88.3%。我们的研究结果指出了几种具有相当诊断潜力的dem,特别是用于PDAC的hsa-miR-130b和hsa-miR-148a,用于CP的hsa-miR-192和hsa-miR-150,以及用于区分PDAC和CP的hsa-miR-222。这些结果强调了mirna作为生物标志物和治疗靶点的前景,需要进一步验证以改善诊断方法和患者预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Gene
Human Gene Biochemistry, Genetics and Molecular Biology (General), Genetics
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
54 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信