Effect of pitching splitter plate on the wake topology and drag reduction of two square cylinders in tandem arrangement

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL
Prabir Sikdar , Sunil Manohar Dash
{"title":"Effect of pitching splitter plate on the wake topology and drag reduction of two square cylinders in tandem arrangement","authors":"Prabir Sikdar ,&nbsp;Sunil Manohar Dash","doi":"10.1016/j.oceaneng.2025.121283","DOIUrl":null,"url":null,"abstract":"<div><div>An active flow control mechanism using a hinged splitter plate is explored to modify wake topology and reduce drag of tandem square cylinders (TSCs) at pitch ratio of <em>G/D</em> = 6 and Reynolds Number <em>Re</em> = 100, where <em>G</em> represents the centre-to-centre spacing between cylinders of length <em>D</em>. The rigid plate is hinged at the midpoint of the upstream cylinder's rear face (HSPU). The governing parameters are pitching amplitudes (<span><math><mrow><msub><mi>θ</mi><mi>m</mi></msub></mrow></math></span> = 10°–20°), non-dimensional frequencies (<span><math><mrow><msub><mrow><mi>S</mi><mi>t</mi></mrow><mi>f</mi></msub><mo>=</mo><msub><mi>f</mi><mi>f</mi></msub><mi>A</mi><mo>/</mo><mi>U</mi></mrow></math></span> = 0.1 − 0.4), and length <span><math><mrow><mo>(</mo><msub><mi>L</mi><mi>f</mi></msub><mo>/</mo><mi>D</mi></mrow></math></span> = 0–1) of the plate, which significantly affects wake structures, nature of vortex-interactions, pressure distribution, aerodynamic forces, power consumption, and effectiveness of drag reduction. Here, <span><math><mrow><msub><mi>f</mi><mi>f</mi></msub></mrow></math></span> and <em>A</em> are the pitching frequency and total excursion of the tail end of the plate, respectively. The free-stream velocity is <em>U</em>. Four distinct flow regimes are identified for the TSC-HSPU setup. Type – I involves von Karman vortex shedding, where the upstream cylinder vortex (UCV) dominates over the plate vortex (PV) in the cylinder gap region. For Type – II, bigger and stronger PVs induce a chain-like vortex pattern. In Type – III, PVs become sufficiently strong to inhibit UCVs shedding. In Type − IV, the strongest PVs interact with UCVs and generate a new vortex that dominates the cylinder gap region. Notably, Type − II and Type − III regimes yield lower drag. In comparison to TSC, the highest drag reduction of the TSC-HSPU setup is 47 %, obtained at <span><math><mrow><msub><mi>L</mi><mi>f</mi></msub><mo>/</mo><mi>D</mi></mrow></math></span> = 1.00, <span><math><mrow><msub><mrow><mi>S</mi><mi>t</mi></mrow><mi>f</mi></msub></mrow></math></span> = 0.20, and <span><math><mrow><msub><mi>θ</mi><mi>m</mi></msub></mrow></math></span> = 10°.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"330 ","pages":"Article 121283"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825009965","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

An active flow control mechanism using a hinged splitter plate is explored to modify wake topology and reduce drag of tandem square cylinders (TSCs) at pitch ratio of G/D = 6 and Reynolds Number Re = 100, where G represents the centre-to-centre spacing between cylinders of length D. The rigid plate is hinged at the midpoint of the upstream cylinder's rear face (HSPU). The governing parameters are pitching amplitudes (θm = 10°–20°), non-dimensional frequencies (Stf=ffA/U = 0.1 − 0.4), and length (Lf/D = 0–1) of the plate, which significantly affects wake structures, nature of vortex-interactions, pressure distribution, aerodynamic forces, power consumption, and effectiveness of drag reduction. Here, ff and A are the pitching frequency and total excursion of the tail end of the plate, respectively. The free-stream velocity is U. Four distinct flow regimes are identified for the TSC-HSPU setup. Type – I involves von Karman vortex shedding, where the upstream cylinder vortex (UCV) dominates over the plate vortex (PV) in the cylinder gap region. For Type – II, bigger and stronger PVs induce a chain-like vortex pattern. In Type – III, PVs become sufficiently strong to inhibit UCVs shedding. In Type − IV, the strongest PVs interact with UCVs and generate a new vortex that dominates the cylinder gap region. Notably, Type − II and Type − III regimes yield lower drag. In comparison to TSC, the highest drag reduction of the TSC-HSPU setup is 47 %, obtained at Lf/D = 1.00, Stf = 0.20, and θm = 10°.
俯仰分流板对两方圆柱串联布置尾流拓扑和减阻的影响
在螺距比为G/D = 6、雷诺数Re = 100 (G表示长度为D的圆柱体之间的中心间距)的条件下,探索了一种采用铰接分流板的主动流动控制机制,以改变尾迹拓扑并减小串联方形圆柱体(tsc)的阻力。刚性板铰接在上游圆柱体后面(HSPU)的中点。控制参数为俯仰幅度(θm = 10°-20°)、无量程频率(Stf=ffA/U = 0.1 - 0.4)和长度(Lf/D = 0-1),对尾流结构、涡相互作用性质、压力分布、气动力、功耗和减阻效果有显著影响。其中ff和A分别为板尾的俯仰频率和总偏移量。自由流速度为u。TSC-HSPU设置确定了四种不同的流动状态。I型为von Karman涡脱落,在柱面间隙区上游圆柱涡(UCV)占主导地位,而板涡(PV)占主导地位。对于II型,更大和更强的pv诱导链状涡型。在III型中,pv变得足够强大以抑制ucv的脱落。在−IV型中,最强的pv与ucv相互作用并产生一个新的涡,该涡主导圆柱体间隙区域。值得注意的是,型- II和型- III机制产生更低的阻力。与TSC相比,在f/D = 1.00、Stf = 0.20、θm = 10°时,TSC- hspu装置的最大减阻率为47%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信