{"title":"A vector quantized masked autoencoder for audiovisual speech emotion recognition","authors":"Samir Sadok , Simon Leglaive, Renaud Séguier","doi":"10.1016/j.cviu.2025.104362","DOIUrl":null,"url":null,"abstract":"<div><div>An important challenge in emotion recognition is to develop methods that can leverage unlabeled training data. In this paper, we propose the VQ-MAE-AV model, a self-supervised multimodal model that leverages masked autoencoders to learn representations of audiovisual speech without labels. The model includes vector quantized variational autoencoders that compress raw audio and visual speech data into discrete tokens. The audiovisual speech tokens are used to train a multimodal masked autoencoder that consists of an encoder–decoder architecture with attention mechanisms. The model is designed to extract both local (i.e., at the frame level) and global (i.e., at the sequence level) representations of audiovisual speech. During self-supervised pre-training, the VQ-MAE-AV model is trained on a large-scale unlabeled dataset of audiovisual speech, for the task of reconstructing randomly masked audiovisual speech tokens and with a contrastive learning strategy. During this pre-training, the encoder learns to extract a representation of audiovisual speech that can be subsequently leveraged for emotion recognition. During the supervised fine-tuning stage, a small classification model is trained on top of the VQ-MAE-AV encoder for an emotion recognition task. The proposed approach achieves state-of-the-art emotion recognition results across several datasets in both controlled and in-the-wild conditions.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"257 ","pages":"Article 104362"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314225000852","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
An important challenge in emotion recognition is to develop methods that can leverage unlabeled training data. In this paper, we propose the VQ-MAE-AV model, a self-supervised multimodal model that leverages masked autoencoders to learn representations of audiovisual speech without labels. The model includes vector quantized variational autoencoders that compress raw audio and visual speech data into discrete tokens. The audiovisual speech tokens are used to train a multimodal masked autoencoder that consists of an encoder–decoder architecture with attention mechanisms. The model is designed to extract both local (i.e., at the frame level) and global (i.e., at the sequence level) representations of audiovisual speech. During self-supervised pre-training, the VQ-MAE-AV model is trained on a large-scale unlabeled dataset of audiovisual speech, for the task of reconstructing randomly masked audiovisual speech tokens and with a contrastive learning strategy. During this pre-training, the encoder learns to extract a representation of audiovisual speech that can be subsequently leveraged for emotion recognition. During the supervised fine-tuning stage, a small classification model is trained on top of the VQ-MAE-AV encoder for an emotion recognition task. The proposed approach achieves state-of-the-art emotion recognition results across several datasets in both controlled and in-the-wild conditions.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems