{"title":"Adaptability of rice to different planting methods: A proof of cumulative transcriptional memory","authors":"Karishma Seem , Ayantika Ghosh , Rashmi Varshney , Rakesh Pandey , S. Gopala Krishnan , Trilochan Mohapatra , Suresh Kumar","doi":"10.1016/j.plgene.2025.100515","DOIUrl":null,"url":null,"abstract":"<div><div>Plenty of water is required for cultivation of rice by transplanting that is challenging its cultivation, particularly on erratic rainfall or under drought. Direct-sown rice (DSR) is emerging as an alternative to transplanted rice (TPR) to save water. Performance of rice under DSR conditions varies greatly. While the molecular basis of adaptive plasticity of rice is subtle, tolerance to environmental stresses in crops is important for sustainable food production/security. The present study explores the molecular basis of adaptive/genetic plasticity in rice grown by different methods of planting, emphasising the concept of cumulative transcriptional memory. Our findings of comparative RNA-seq analysis highlighted differential gene expression with ∼6130 genes exclusively upregulated in the leaf of Nagina22 (N22) in contrast to only ∼3540 genes upregulated exclusively in the leaf of IR64 grown by dry/direct-sowing. In addition, our findings revealed that numerous genes showing upregulation in N22 were detected downregulated in IR64 that highlight distinct molecular strategies adopted by the rice cultivars. By activating diverse sets of genes coding for transcription factors, growth-regulating factors, translational machinery, nutrient-reservoirs, chromatin organization/epigenetic modifications, cell cycle/division, carbohydrate metabolism, etc., N22 adapts more effectively/efficiently to direct-sown conditions. Complementarity between these factors emerged to play important roles in adaptability of N22 to fluctuating environmental conditions. This helps adjust physio-biochemical responses of N22 to multiple abiotic/biotic stresses experienced under DSR conditions. Thus, our findings make a foundation for the development of molecular markers to facilitate varietal development of DSR for improved water productivity and sustainable agriculture.</div></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"43 ","pages":"Article 100515"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407325000265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Plenty of water is required for cultivation of rice by transplanting that is challenging its cultivation, particularly on erratic rainfall or under drought. Direct-sown rice (DSR) is emerging as an alternative to transplanted rice (TPR) to save water. Performance of rice under DSR conditions varies greatly. While the molecular basis of adaptive plasticity of rice is subtle, tolerance to environmental stresses in crops is important for sustainable food production/security. The present study explores the molecular basis of adaptive/genetic plasticity in rice grown by different methods of planting, emphasising the concept of cumulative transcriptional memory. Our findings of comparative RNA-seq analysis highlighted differential gene expression with ∼6130 genes exclusively upregulated in the leaf of Nagina22 (N22) in contrast to only ∼3540 genes upregulated exclusively in the leaf of IR64 grown by dry/direct-sowing. In addition, our findings revealed that numerous genes showing upregulation in N22 were detected downregulated in IR64 that highlight distinct molecular strategies adopted by the rice cultivars. By activating diverse sets of genes coding for transcription factors, growth-regulating factors, translational machinery, nutrient-reservoirs, chromatin organization/epigenetic modifications, cell cycle/division, carbohydrate metabolism, etc., N22 adapts more effectively/efficiently to direct-sown conditions. Complementarity between these factors emerged to play important roles in adaptability of N22 to fluctuating environmental conditions. This helps adjust physio-biochemical responses of N22 to multiple abiotic/biotic stresses experienced under DSR conditions. Thus, our findings make a foundation for the development of molecular markers to facilitate varietal development of DSR for improved water productivity and sustainable agriculture.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.