Inteligencia artificial en el diagnóstico por imagen de patología mamaria

IF 0.2 Q4 OBSTETRICS & GYNECOLOGY
Marina Álvarez-Benito, Esperanza Elías-Cabot, Sara Romero-Martín
{"title":"Inteligencia artificial en el diagnóstico por imagen de patología mamaria","authors":"Marina Álvarez-Benito,&nbsp;Esperanza Elías-Cabot,&nbsp;Sara Romero-Martín","doi":"10.1016/j.senol.2025.100684","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial Intelligence systems are showing great development in the field of medical imaging. Its role in population screening programs stands out, where these systems can solve many of the problems detected, such as the lack of sensitivity and specificity of mammography, the workload involved in reading a significant number of studies or the introduction of tomosynthesis.</div><div>The ability of AI systems to establish the risk of breast cancer in an agile way undoubtedly represents a very important step towards personalized screening that will allow the selection of technique and frequency for each patient, or the administration of preventive measures and treatments in women at high risk.</div><div>Radiomics analysis of breast cancers from different modalities and in combination with other clinical-pathological data improves tumor characterization, as well as the prediction of prognosis and response to certain therapies.</div></div>","PeriodicalId":38058,"journal":{"name":"Revista de Senologia y Patologia Mamaria","volume":"38 4","pages":"Article 100684"},"PeriodicalIF":0.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Senologia y Patologia Mamaria","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0214158225000209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence systems are showing great development in the field of medical imaging. Its role in population screening programs stands out, where these systems can solve many of the problems detected, such as the lack of sensitivity and specificity of mammography, the workload involved in reading a significant number of studies or the introduction of tomosynthesis.
The ability of AI systems to establish the risk of breast cancer in an agile way undoubtedly represents a very important step towards personalized screening that will allow the selection of technique and frequency for each patient, or the administration of preventive measures and treatments in women at high risk.
Radiomics analysis of breast cancers from different modalities and in combination with other clinical-pathological data improves tumor characterization, as well as the prediction of prognosis and response to certain therapies.
乳腺病理成像中的人工智能
人工智能系统在医学影像领域有了很大的发展。它在人口筛查项目中的作用非常突出,这些系统可以解决许多检测到的问题,例如乳房x光检查缺乏敏感性和特异性,阅读大量研究或引入断层合成所涉及的工作量。人工智能系统以灵活的方式确定乳腺癌风险的能力无疑是朝着个性化筛查迈出的非常重要的一步,这将允许为每个患者选择技术和频率,或者对高危女性实施预防措施和治疗。不同方式的乳腺癌放射组学分析与其他临床病理数据相结合,可以改善肿瘤特征,以及预测预后和对某些治疗的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista de Senologia y Patologia Mamaria
Revista de Senologia y Patologia Mamaria Medicine-Obstetrics and Gynecology
CiteScore
0.30
自引率
0.00%
发文量
74
审稿时长
63 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信