Woo Joo Jung , Ji Hyeon Jeong , Jin Seok Yoon , Yong Weon Seo
{"title":"Investigation of wheat cold response pathway regulated by TaICE41 and TaCBFⅣd-B9 through Brachypodium distachyon transformation","authors":"Woo Joo Jung , Ji Hyeon Jeong , Jin Seok Yoon , Yong Weon Seo","doi":"10.1016/j.plantsci.2025.112513","DOIUrl":null,"url":null,"abstract":"<div><div>Wheat (<em>Triticum aestivum</em> L.), a major global crop, is vulnerable to freezing stress, particularly during late spring frosts. Enhancing freezing tolerance through cold acclimation, primarily via the ICE-CBF-COR pathway, is crucial for improving wheat productivity. This study focuses on identifying genes regulated by the ICE-CBF pathway and those that function independently in response to freezing stress. <em>TaICE41</em> and <em>TaCBFⅣd-B9</em>, two key genes associated with cold tolerance, were cloned and analyzed for their phylogenetic characteristics and subcellular localization. Transgenic <em>Brachypodium distachyon</em> overexpressing these genes demonstrated enhanced freezing tolerance, with increased survival rates and proline content, compared to wild-type plants. RNA-seq analysis revealed distinct gene expression profiles under cold stress, highlighting both shared and unique pathways regulated by ICE41 and CBF. Notably, the <em>TaICE41</em>-overexpressing lines exhibited upregulation of genes involved in phenylpropanoid biosynthesis and starch-sucrose metabolism, contributing to stress response. This study provides new insights into the ICE-CBF pathway and its role in cold tolerance, emphasizing the importance of understanding both ICE-CBF-regulated and independent cold-responsive genes for improving freezing tolerance in crops.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"356 ","pages":"Article 112513"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945225001311","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Wheat (Triticum aestivum L.), a major global crop, is vulnerable to freezing stress, particularly during late spring frosts. Enhancing freezing tolerance through cold acclimation, primarily via the ICE-CBF-COR pathway, is crucial for improving wheat productivity. This study focuses on identifying genes regulated by the ICE-CBF pathway and those that function independently in response to freezing stress. TaICE41 and TaCBFⅣd-B9, two key genes associated with cold tolerance, were cloned and analyzed for their phylogenetic characteristics and subcellular localization. Transgenic Brachypodium distachyon overexpressing these genes demonstrated enhanced freezing tolerance, with increased survival rates and proline content, compared to wild-type plants. RNA-seq analysis revealed distinct gene expression profiles under cold stress, highlighting both shared and unique pathways regulated by ICE41 and CBF. Notably, the TaICE41-overexpressing lines exhibited upregulation of genes involved in phenylpropanoid biosynthesis and starch-sucrose metabolism, contributing to stress response. This study provides new insights into the ICE-CBF pathway and its role in cold tolerance, emphasizing the importance of understanding both ICE-CBF-regulated and independent cold-responsive genes for improving freezing tolerance in crops.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.