An investigation of the impact of organizational big data analytics capabilities on healthcare supply chain resiliency

Detcharat Sumrit
{"title":"An investigation of the impact of organizational big data analytics capabilities on healthcare supply chain resiliency","authors":"Detcharat Sumrit","doi":"10.1016/j.health.2025.100393","DOIUrl":null,"url":null,"abstract":"<div><div>Evaluating organizational big data analytics capabilities (BDAC) is crucial for strengthening resilience in healthcare supply chains (HSCs). This study employs an integrated multi-criteria decision-making (MCDM) approach, combining the Decision-making Trial and Evaluation Laboratory (DANP) and Multi-Attributive Border Approximation Area Comparison (MABAC) methods in a fuzzy environment. The goal is to assess the interdependence of BDAC and its impact on resilience within the HSC. The research draws on organizational information processing (OIP) and knowledge-based view (KBV) theoretical lenses to identify relevant BDAC components. The study yields context-specific insights into the role of big data analytics in fortifying the HSC Using a case study in a public hospital. The findings contribute to the understanding of supply chain resilience, emphasizing the pivotal role of BDAC in organizational preparedness. This knowledge can guide healthcare sector managers in making informed decisions to enhance overall resilience, allowing organizations to navigate uncertainties and challenges proactively. Ultimately, leveraging insights from this study can foster a more adaptive and resilient HSC, benefiting both patients and stakeholders.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"7 ","pages":"Article 100393"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442525000127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluating organizational big data analytics capabilities (BDAC) is crucial for strengthening resilience in healthcare supply chains (HSCs). This study employs an integrated multi-criteria decision-making (MCDM) approach, combining the Decision-making Trial and Evaluation Laboratory (DANP) and Multi-Attributive Border Approximation Area Comparison (MABAC) methods in a fuzzy environment. The goal is to assess the interdependence of BDAC and its impact on resilience within the HSC. The research draws on organizational information processing (OIP) and knowledge-based view (KBV) theoretical lenses to identify relevant BDAC components. The study yields context-specific insights into the role of big data analytics in fortifying the HSC Using a case study in a public hospital. The findings contribute to the understanding of supply chain resilience, emphasizing the pivotal role of BDAC in organizational preparedness. This knowledge can guide healthcare sector managers in making informed decisions to enhance overall resilience, allowing organizations to navigate uncertainties and challenges proactively. Ultimately, leveraging insights from this study can foster a more adaptive and resilient HSC, benefiting both patients and stakeholders.
组织大数据分析能力对医疗保健供应链弹性影响的调查
评估组织的大数据分析能力(BDAC)对于加强医疗保健供应链(hsc)的弹性至关重要。本研究采用综合多准则决策(MCDM)方法,将决策试验与评价实验室(DANP)方法与多属性边界近似面积比较(MABAC)方法相结合,在模糊环境下进行决策。目标是评估BDAC的相互依赖性及其对HSC内弹性的影响。本研究利用组织信息处理(OIP)和知识基础观(KBV)的理论视角来识别相关的BDAC组成部分。通过对一家公立医院的案例研究,该研究对大数据分析在加强HSC中的作用产生了具体的见解。研究结果有助于理解供应链弹性,强调BDAC在组织准备中的关键作用。这些知识可以指导医疗保健部门管理人员做出明智的决策,以增强整体弹性,使组织能够主动应对不确定性和挑战。最终,利用本研究的见解可以培养更具适应性和弹性的HSC,使患者和利益相关者受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信