Application of sponge iron-carbon to enrich anaerobic ammonia-oxidizing bacteria from sludge mixture and coupled denitrification for degradation of industrial wastewater

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Zhenxin Li , Yongqiang Zhu , Minli Zhang , Zhiling Li , Zhiguang Chang , Shichen Kang
{"title":"Application of sponge iron-carbon to enrich anaerobic ammonia-oxidizing bacteria from sludge mixture and coupled denitrification for degradation of industrial wastewater","authors":"Zhenxin Li ,&nbsp;Yongqiang Zhu ,&nbsp;Minli Zhang ,&nbsp;Zhiling Li ,&nbsp;Zhiguang Chang ,&nbsp;Shichen Kang","doi":"10.1016/j.jconhyd.2025.104571","DOIUrl":null,"url":null,"abstract":"<div><div>For the treatment of industrial wastewater, coupled iron‑carbon micro-electrolysis (ICME) with anaerobic ammonia oxidation (anammox) and denitrification was optimized under the following conditions: Fe/C = 2, C/N ≤ 2, and the temperature was 30 °C. The coupled ICME enriched ammonia-oxidizing bacteria (AnAOB) and denitrifying bacteria (DB) in the mixed sludge on the 76th day of the present experiment. Stable operation was achieved on the 78th day. The COD and TN removal rates during the operation were 86.20 % and 87.12 %, respectively, while the control group (without iron and carbon) had removal rates of 74.30 % and 60.31 % which were 11.9 % and 26.81 % higher, respectively. Notably, the abundance of AnAOB in the system increased from 0.44 % to 1.43 % during the operation from day 76 to day 100. High-throughput sequencing demonstrated that <em>Candidatus_Kuenenia</em> was a key anaerobic ammonia-oxidizing bacterium. Based on the experimental results, the ICME process could rapidly enrich anaerobic ammonia-oxidizing bacteria to change the microbial community structure of the sludge under the water quality conditions of industrial wastewater and increasing the tolerance of certain DB and <em>Candidatus_Kuenenia</em> to water quality. By combining with iron‑carbon, the rapid modification of mixed sludge was achieved, and the iron‑carbon micro-electrolysis coupled denitrification anaerobic ammonia oxidation process was established, which provides a certain reference value for treating industrial wastewater.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"272 ","pages":"Article 104571"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772225000762","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

For the treatment of industrial wastewater, coupled iron‑carbon micro-electrolysis (ICME) with anaerobic ammonia oxidation (anammox) and denitrification was optimized under the following conditions: Fe/C = 2, C/N ≤ 2, and the temperature was 30 °C. The coupled ICME enriched ammonia-oxidizing bacteria (AnAOB) and denitrifying bacteria (DB) in the mixed sludge on the 76th day of the present experiment. Stable operation was achieved on the 78th day. The COD and TN removal rates during the operation were 86.20 % and 87.12 %, respectively, while the control group (without iron and carbon) had removal rates of 74.30 % and 60.31 % which were 11.9 % and 26.81 % higher, respectively. Notably, the abundance of AnAOB in the system increased from 0.44 % to 1.43 % during the operation from day 76 to day 100. High-throughput sequencing demonstrated that Candidatus_Kuenenia was a key anaerobic ammonia-oxidizing bacterium. Based on the experimental results, the ICME process could rapidly enrich anaerobic ammonia-oxidizing bacteria to change the microbial community structure of the sludge under the water quality conditions of industrial wastewater and increasing the tolerance of certain DB and Candidatus_Kuenenia to water quality. By combining with iron‑carbon, the rapid modification of mixed sludge was achieved, and the iron‑carbon micro-electrolysis coupled denitrification anaerobic ammonia oxidation process was established, which provides a certain reference value for treating industrial wastewater.
应用海绵铁碳从污泥混合物中富集厌氧氨氧化菌并耦合反硝化技术降解工业废水
在Fe/C = 2, C/N≤2,温度为30℃的条件下,对铁碳耦合微电解(ICME) -厌氧氨氧化(anammox) -反硝化工艺处理工业废水进行了优化。本试验第76天,ICME偶联富集了混合污泥中的氨氧化菌(AnAOB)和反硝化菌(DB)。第78天手术稳定。操作过程中COD和TN的去除率分别为86.20%和87.12%,而对照组(不含铁和碳)的去除率分别为74.30%和60.31%,分别高出11.9%和26.81%。值得注意的是,从第76天到第100天,系统中AnAOB的丰度从0.44%增加到1.43%。高通量测序结果表明,Candidatus_Kuenenia是一个关键的厌氧氨氧化细菌。实验结果表明,在工业废水的水质条件下,ICME工艺可以快速富集厌氧氨氧化菌,改变污泥的微生物群落结构,提高某些DB和Candidatus_Kuenenia对水质的耐受性。通过与铁碳结合,实现了混合污泥的快速改性,建立了铁碳微电解耦合反硝化厌氧氨氧化工艺,为处理工业废水提供了一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of contaminant hydrology
Journal of contaminant hydrology 环境科学-地球科学综合
CiteScore
6.80
自引率
2.80%
发文量
129
审稿时长
68 days
期刊介绍: The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide). The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信