Matching polynomials of path-trees of a complete bipartite graph

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Haiyan Chen , Yinxia Yuan
{"title":"Matching polynomials of path-trees of a complete bipartite graph","authors":"Haiyan Chen ,&nbsp;Yinxia Yuan","doi":"10.1016/j.dam.2025.04.014","DOIUrl":null,"url":null,"abstract":"<div><div>Suppose that the vertex set of the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> is <span><math><mrow><mi>X</mi><mo>∪</mo><mi>Y</mi></mrow></math></span>, where <span><math><mrow><mo>|</mo><mi>X</mi><mo>|</mo><mo>=</mo><mi>s</mi><mo>≤</mo><mi>t</mi><mo>=</mo><mo>|</mo><mi>Y</mi><mo>|</mo></mrow></math></span>. Let <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>w</mi></mrow></msubsup></math></span> denote the path-tree of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> corresponding to vertex <span><math><mrow><mi>w</mi><mo>∈</mo><mi>X</mi><mo>∪</mo><mi>Y</mi></mrow></math></span>. Then we show that the matching polynomial <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>w</mi></mrow></msubsup><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is equal to <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mi>⋅</mi></mrow></math></span>\n <span><math><mfenced><mrow><mtable><mtr><mtd><msup><mrow><mfenced><mrow><munderover><mrow><mo>∏</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></munderover><msup><mrow><mfenced><mrow><mi>μ</mi><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>α</mi><mo>+</mo><mi>k</mi></mrow></msub><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>μ</mi><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>α</mi><mo>+</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mi>α</mi><mo>+</mo><mi>k</mi></mrow><mrow><mi>α</mi><mo>+</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow></msup></mrow></mfenced></mrow><mrow><msubsup><mrow><mi>β</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>k</mi></mrow></msubsup></mrow></msup></mrow></mfenced></mrow><mrow><mi>t</mi></mrow></msup><mo>,</mo></mtd><mtd><mspace></mspace><mtext> if </mtext><mi>w</mi><mo>∈</mo><mi>X</mi><mo>;</mo></mtd></mtr><mtr><mtd><mi>μ</mi><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mfenced><mrow><munderover><mrow><mo>∏</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></munderover><msup><mrow><mfenced><mrow><mi>μ</mi><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>α</mi><mo>+</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>α</mi><mo>+</mo><mi>k</mi><mo>)</mo></mrow></mrow></msup><mi>μ</mi><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>α</mi><mo>+</mo><mi>k</mi></mrow></msub><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi><mo>+</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfenced></mrow><mrow><msubsup><mrow><mi>β</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>k</mi></mrow></msubsup></mrow></msup></mrow></mfenced></mrow><mrow><mi>s</mi></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mspace></mspace><mtext> if </mtext><mi>w</mi><mo>∈</mo><mi>Y</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span> where <span><math><mrow><mi>α</mi><mo>=</mo><mi>t</mi><mo>−</mo><mi>s</mi><mo>,</mo><msubsup><mrow><mi>β</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mo>=</mo><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>=</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mi>j</mi><mrow><mo>(</mo><mi>α</mi><mo>+</mo><mi>j</mi><mo>)</mo></mrow></mrow></math></span>.</div><div>This result has a number of consequences. It follows that the roots of <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>w</mi></mrow></msubsup><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> (i.e. the eigenvalues of <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>w</mi></mrow></msubsup></math></span>), the (matching) energy of <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>w</mi></mrow></msubsup></math></span>, and the Hosoya index of <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>w</mi></mrow></msubsup></math></span> can all be obtained directly from that of <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mrow><mo>(</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 173-179"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001866","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that the vertex set of the complete bipartite graph Ks,t is XY, where |X|=st=|Y|. Let Ts,tw denote the path-tree of Ks,t corresponding to vertex wXY. Then we show that the matching polynomial μ(Ts,tw,x) is equal to μ(Ks,t,x) k=1s1μ(Kk,α+k,x)k1μ(Kk,α+k+1,x)α+kα+k+1βs,tkt, if wX;μ(Ks,t1,x)s1k=1s1μ(Kk,α+k1,x)(k1)(α+k)μ(Kk,α+k,x)α+k1βs,tks, if wY, where α=ts,βs,tk=j=k+1s1j(α+j).
This result has a number of consequences. It follows that the roots of μ(Ts,tw,x) (i.e. the eigenvalues of Ts,tw), the (matching) energy of Ts,tw, and the Hosoya index of Ts,tw can all be obtained directly from that of Ki,j(1is,1jt).
完整双向图路径树的匹配多项式
假设完整双向图 Ks,t 的顶点集是 X∪Y,其中 |X|=s≤t=|Y|。让 Ts,tw 表示顶点 w∈X∪Y 对应的 Ks,t 的路径树。然后我们证明匹配多项式 μ(Ts,tw,x) 等于 μ(Ks,t,x)⋅ ∏k=1s-1μ(Kk,α+k,x)k-1μ(Kk,α+k+1,x)α+kα+k+1βs,tkt, 如果 w∈X;μ(Ks,t-1,x)s-1∏k=1s-1μ(Kk,α+k-1,x)(k-1)(α+k)μ(Kk,α+k,x)α+k-1βs,tks,如果 w∈Y,其中 α=t-s,βs,tk=∏j=k+1s-1j(α+j)。这一结果会带来一系列后果。由此可见,μ(Ts,tw,x) 的根(即 Ts,tw 的特征值)、Ts,tw 的(匹配)能量和 Ts,tw 的霍索亚指数都可以直接从 Ki,j(1≤i≤s,1≤j≤t) 的根中得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信