{"title":"Matching polynomials of path-trees of a complete bipartite graph","authors":"Haiyan Chen , Yinxia Yuan","doi":"10.1016/j.dam.2025.04.014","DOIUrl":null,"url":null,"abstract":"<div><div>Suppose that the vertex set of the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> is <span><math><mrow><mi>X</mi><mo>∪</mo><mi>Y</mi></mrow></math></span>, where <span><math><mrow><mo>|</mo><mi>X</mi><mo>|</mo><mo>=</mo><mi>s</mi><mo>≤</mo><mi>t</mi><mo>=</mo><mo>|</mo><mi>Y</mi><mo>|</mo></mrow></math></span>. Let <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>w</mi></mrow></msubsup></math></span> denote the path-tree of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> corresponding to vertex <span><math><mrow><mi>w</mi><mo>∈</mo><mi>X</mi><mo>∪</mo><mi>Y</mi></mrow></math></span>. Then we show that the matching polynomial <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>w</mi></mrow></msubsup><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is equal to <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mi>⋅</mi></mrow></math></span>\n <span><math><mfenced><mrow><mtable><mtr><mtd><msup><mrow><mfenced><mrow><munderover><mrow><mo>∏</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></munderover><msup><mrow><mfenced><mrow><mi>μ</mi><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>α</mi><mo>+</mo><mi>k</mi></mrow></msub><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>μ</mi><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>α</mi><mo>+</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mi>α</mi><mo>+</mo><mi>k</mi></mrow><mrow><mi>α</mi><mo>+</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow></msup></mrow></mfenced></mrow><mrow><msubsup><mrow><mi>β</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>k</mi></mrow></msubsup></mrow></msup></mrow></mfenced></mrow><mrow><mi>t</mi></mrow></msup><mo>,</mo></mtd><mtd><mspace></mspace><mtext> if </mtext><mi>w</mi><mo>∈</mo><mi>X</mi><mo>;</mo></mtd></mtr><mtr><mtd><mi>μ</mi><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mfenced><mrow><munderover><mrow><mo>∏</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></munderover><msup><mrow><mfenced><mrow><mi>μ</mi><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>α</mi><mo>+</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>α</mi><mo>+</mo><mi>k</mi><mo>)</mo></mrow></mrow></msup><mi>μ</mi><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>α</mi><mo>+</mo><mi>k</mi></mrow></msub><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi><mo>+</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfenced></mrow><mrow><msubsup><mrow><mi>β</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>k</mi></mrow></msubsup></mrow></msup></mrow></mfenced></mrow><mrow><mi>s</mi></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mspace></mspace><mtext> if </mtext><mi>w</mi><mo>∈</mo><mi>Y</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span> where <span><math><mrow><mi>α</mi><mo>=</mo><mi>t</mi><mo>−</mo><mi>s</mi><mo>,</mo><msubsup><mrow><mi>β</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mo>=</mo><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>=</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mi>j</mi><mrow><mo>(</mo><mi>α</mi><mo>+</mo><mi>j</mi><mo>)</mo></mrow></mrow></math></span>.</div><div>This result has a number of consequences. It follows that the roots of <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>w</mi></mrow></msubsup><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> (i.e. the eigenvalues of <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>w</mi></mrow></msubsup></math></span>), the (matching) energy of <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>w</mi></mrow></msubsup></math></span>, and the Hosoya index of <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow><mrow><mi>w</mi></mrow></msubsup></math></span> can all be obtained directly from that of <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mrow><mo>(</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 173-179"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001866","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Suppose that the vertex set of the complete bipartite graph is , where . Let denote the path-tree of corresponding to vertex . Then we show that the matching polynomial is equal to
where .
This result has a number of consequences. It follows that the roots of (i.e. the eigenvalues of ), the (matching) energy of , and the Hosoya index of can all be obtained directly from that of .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.