Crosstalk between gut metabolomics, bioaccumulation, and microbial enrichment in earthworms for effective remediation of toxic metals: Insights from green waste-based vermicomposting systems
{"title":"Crosstalk between gut metabolomics, bioaccumulation, and microbial enrichment in earthworms for effective remediation of toxic metals: Insights from green waste-based vermicomposting systems","authors":"Himadri Mandal , Saptarshijyoti Gogoi , Atheena Menon G , Malini Laloraya , Bornali Gogoi , Satya Sundar Bhattacharya","doi":"10.1016/j.jenvman.2025.125430","DOIUrl":null,"url":null,"abstract":"<div><div>The knowledge on earthworm gut metabolomic variations in metal-enriched green waste (GW)-based vermicomposting systems is scarce. Earthworm's gut metabolite-metal accumulation interactions have also not been studied earlier. Therefore, GW-based <em>Eisenia fetida</em>-mediated vermicomposting and aerobic composting systems were spiked with Pb-Cr-Cu (1:1:1)-mixed solutions. While earthworm reproduction, body weight, and gut microbial growth were slightly lower in metal-spiked GW-vermibeds compared to unspiked vermibeds, the temporal increase in N-P-K enrichment, feedstock microbial counts, and microbial biomass-C&N were significantly more in metal-spiked vermicomposts than in metal-spiked composts. Interestingly, the metal removal efficiency was ∼1.2–3.0 times higher in metal-spiked vermibeds than in unspiked vermibeds and composting beds. Furthermore, the degree of bioaccumulation for Pb (spiked - 1.64 mg kg<sup>−1</sup> versus unspiked - 0.22 mg kg<sup>−1</sup>), Cr (spiked - 0.92 mg kg<sup>−1</sup> versus unspiked - 0.40 mg kg<sup>−1</sup>), and Cu (spiked – 1.54 mg kg<sup>−1</sup> versus unspiked - 0.79 mg kg<sup>−1</sup>) was significantly higher in earthworms grown in spiked than in unspiked GW feedstocks. The LC-QTOF-MS-mediated earthworm-gut metabolomic profiling revealed that 655 biomolecules were significantly up or down-regulated due to metal spiking. Interestingly, compounds known for stress-ameliorating roles (e.g., methylcitisine and trans-anethole) have increased most dramatically in metal-spiked vermibed-borne earthworms. A KEGG-database analysis revealed that the phenylpropanoid pathway metabolites augment in metal-rich feedstock-borne earthworms. Finally, the correlation statistics clarified that earthworm gut metabolite distribution meaningfully alters to enhance the detoxification of non-essential toxic metals (Pb and Cr) more than essential micronutrient metals (Cu) in waste-based vermicomposting systems.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"383 ","pages":"Article 125430"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725014069","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The knowledge on earthworm gut metabolomic variations in metal-enriched green waste (GW)-based vermicomposting systems is scarce. Earthworm's gut metabolite-metal accumulation interactions have also not been studied earlier. Therefore, GW-based Eisenia fetida-mediated vermicomposting and aerobic composting systems were spiked with Pb-Cr-Cu (1:1:1)-mixed solutions. While earthworm reproduction, body weight, and gut microbial growth were slightly lower in metal-spiked GW-vermibeds compared to unspiked vermibeds, the temporal increase in N-P-K enrichment, feedstock microbial counts, and microbial biomass-C&N were significantly more in metal-spiked vermicomposts than in metal-spiked composts. Interestingly, the metal removal efficiency was ∼1.2–3.0 times higher in metal-spiked vermibeds than in unspiked vermibeds and composting beds. Furthermore, the degree of bioaccumulation for Pb (spiked - 1.64 mg kg−1 versus unspiked - 0.22 mg kg−1), Cr (spiked - 0.92 mg kg−1 versus unspiked - 0.40 mg kg−1), and Cu (spiked – 1.54 mg kg−1 versus unspiked - 0.79 mg kg−1) was significantly higher in earthworms grown in spiked than in unspiked GW feedstocks. The LC-QTOF-MS-mediated earthworm-gut metabolomic profiling revealed that 655 biomolecules were significantly up or down-regulated due to metal spiking. Interestingly, compounds known for stress-ameliorating roles (e.g., methylcitisine and trans-anethole) have increased most dramatically in metal-spiked vermibed-borne earthworms. A KEGG-database analysis revealed that the phenylpropanoid pathway metabolites augment in metal-rich feedstock-borne earthworms. Finally, the correlation statistics clarified that earthworm gut metabolite distribution meaningfully alters to enhance the detoxification of non-essential toxic metals (Pb and Cr) more than essential micronutrient metals (Cu) in waste-based vermicomposting systems.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.