{"title":"An (F3,F4)-partition of planar graphs without 4- and 6-cycles","authors":"Kaiyang Hu, Mingfang Huang","doi":"10.1016/j.dam.2025.04.018","DOIUrl":null,"url":null,"abstract":"<div><div>An <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>)</mo></mrow></math></span>-partition of a graph <span><math><mi>G</mi></math></span> is a partition of its vertices set into <span><math><mi>k</mi></math></span> subsets <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> where each <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> induces a forest with maximum degree at most <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span>. Cho et al.(2021) proved that every planar graph without 4- and 5-cycles admits an <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>)</mo></mrow></math></span>-partition. In this paper, we show that every planar graph without 4- and 6-cycles admits an <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>)</mo></mrow></math></span>-partition, which strengthens a previous result due to Nakprasit et al. (2024) in a stronger form.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 1-9"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001842","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
An -partition of a graph is a partition of its vertices set into subsets where each induces a forest with maximum degree at most for . Cho et al.(2021) proved that every planar graph without 4- and 5-cycles admits an -partition. In this paper, we show that every planar graph without 4- and 6-cycles admits an -partition, which strengthens a previous result due to Nakprasit et al. (2024) in a stronger form.
图G的一个(Fd1,…,Fdk)划分是将图G的顶点集划分为k个子集V1,…,Vk,其中对于i∈{1,…,k},每个Vi都诱导出一个最大程度不超过di的森林。Cho et al.(2021)证明了每一个没有4-环和5-环的平面图都存在(F3,F4)分割。在本文中,我们证明了每一个没有4环和6环的平面图都存在一个(F3,F4)分割,它以更强的形式加强了Nakprasit et al.(2024)先前的结果。
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.