Analysis of the synergetic effects of grooved gas diffusion layer and semi-blocked flow channels in improving proton exchange membrane fuel cells performance
{"title":"Analysis of the synergetic effects of grooved gas diffusion layer and semi-blocked flow channels in improving proton exchange membrane fuel cells performance","authors":"Bahar Amani, Amir Zanj","doi":"10.1016/j.icheatmasstransfer.2025.108973","DOIUrl":null,"url":null,"abstract":"<div><div>Low volumetric power density is one of the barriers to the commercialization of proton exchange membrane fuel cells. Various techniques have been introduced to increase their power density, including modifications to the reactant flow fields to optimize species delivery to the catalyst layer. This study compares the impact of two performance-enhancing techniques on proton exchange membrane fuel cells: a semi-blocked flow channel and a grooved gas diffusion layer numerically using the finite volume method. The research introduces a novel cathode configuration combining both methods to assess their synergetic effects on proton exchange membrane fuel cell performance. Results demonstrate that while at a cell voltage of 0.6 V, the semi-blocked flow channel enhances performance by 0.569 %, and the grooved GDL yields a 0.292 % improvement; integrating both techniques achieves a synergistic enhancement exceeding 1 %. Additionally, the study examines how groove width and GDL characteristics influence the effectiveness of the introduced configuration, offering insights into optimizing cathode design for superior PEMFC performance.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"164 ","pages":"Article 108973"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325003999","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Low volumetric power density is one of the barriers to the commercialization of proton exchange membrane fuel cells. Various techniques have been introduced to increase their power density, including modifications to the reactant flow fields to optimize species delivery to the catalyst layer. This study compares the impact of two performance-enhancing techniques on proton exchange membrane fuel cells: a semi-blocked flow channel and a grooved gas diffusion layer numerically using the finite volume method. The research introduces a novel cathode configuration combining both methods to assess their synergetic effects on proton exchange membrane fuel cell performance. Results demonstrate that while at a cell voltage of 0.6 V, the semi-blocked flow channel enhances performance by 0.569 %, and the grooved GDL yields a 0.292 % improvement; integrating both techniques achieves a synergistic enhancement exceeding 1 %. Additionally, the study examines how groove width and GDL characteristics influence the effectiveness of the introduced configuration, offering insights into optimizing cathode design for superior PEMFC performance.
期刊介绍:
International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.