{"title":"Investigation of endocytic pathways during entry of RNA viruses reveal novel host proteins as lipid raft dependent endocytosis mediators","authors":"Dileep Kumar Verma, Sakshi Chaudhary, Sujatha Sunil","doi":"10.1016/j.virol.2025.110531","DOIUrl":null,"url":null,"abstract":"<div><div>Entry of viruses inside host cell after successful attachment is an essential step to ensure its genome replication and progeny production using host cell machinery. Targeting viral entry has been proven an effective therapeutic approach to prevent or treat viral infections. Viruses exploit different operational ligand entry routes to gain entry inside the host cell. Host membrane rafts are crucial for membrane mediated events such as ligand binding and internalization, signaling and pathogen entry. However, those host proteins involved in this phenomenon and molecular mechanism of this mode of endocytosis has not yet been elucidated. In present study, we investigated raft-dependent endocytosis as a major route for host cell entry for three different enveloped viruses viz. SARS-CoV-2, DENV and CHIKV. Subsequently, we performed quantitative global proteomics of SARS-CoV-2 infected Vero cells at the time of virus entry and during peak viral infection and compared proteomic changes with uninfected control. Subsequently, we implemented pathway enrichment of differentially regulated host proteins and identified regulated cellular pathways during different stages of infection. Finally, we investigated the role of selected proteins identified as significantly regulated through proteome analysis along with some of those proteins previously reported to be involved in any mode of endocytosis, in the raft-dependent endocytosis using inhibitor assay and further validated their role in viral entry through loss-of-function assays. Our results confirm that enveloped viruses exploit the raft-dependent endocytosis as a major route for host cell entry. We further report novel host cell proteins that participate as mediators of raft-dependent endocytosis.</div></div>","PeriodicalId":23666,"journal":{"name":"Virology","volume":"608 ","pages":"Article 110531"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042682225001448","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Entry of viruses inside host cell after successful attachment is an essential step to ensure its genome replication and progeny production using host cell machinery. Targeting viral entry has been proven an effective therapeutic approach to prevent or treat viral infections. Viruses exploit different operational ligand entry routes to gain entry inside the host cell. Host membrane rafts are crucial for membrane mediated events such as ligand binding and internalization, signaling and pathogen entry. However, those host proteins involved in this phenomenon and molecular mechanism of this mode of endocytosis has not yet been elucidated. In present study, we investigated raft-dependent endocytosis as a major route for host cell entry for three different enveloped viruses viz. SARS-CoV-2, DENV and CHIKV. Subsequently, we performed quantitative global proteomics of SARS-CoV-2 infected Vero cells at the time of virus entry and during peak viral infection and compared proteomic changes with uninfected control. Subsequently, we implemented pathway enrichment of differentially regulated host proteins and identified regulated cellular pathways during different stages of infection. Finally, we investigated the role of selected proteins identified as significantly regulated through proteome analysis along with some of those proteins previously reported to be involved in any mode of endocytosis, in the raft-dependent endocytosis using inhibitor assay and further validated their role in viral entry through loss-of-function assays. Our results confirm that enveloped viruses exploit the raft-dependent endocytosis as a major route for host cell entry. We further report novel host cell proteins that participate as mediators of raft-dependent endocytosis.
期刊介绍:
Launched in 1955, Virology is a broad and inclusive journal that welcomes submissions on all aspects of virology including plant, animal, microbial and human viruses. The journal publishes basic research as well as pre-clinical and clinical studies of vaccines, anti-viral drugs and their development, anti-viral therapies, and computational studies of virus infections. Any submission that is of broad interest to the community of virologists/vaccinologists and reporting scientifically accurate and valuable research will be considered for publication, including negative findings and multidisciplinary work.Virology is open to reviews, research manuscripts, short communication, registered reports as well as follow-up manuscripts.