Surface-Enhanced Raman Scattering (SERS) combined with machine learning enables accurate diagnosis of cervical cancer: From molecule to cell to tissue level
{"title":"Surface-Enhanced Raman Scattering (SERS) combined with machine learning enables accurate diagnosis of cervical cancer: From molecule to cell to tissue level","authors":"Biqing Chen , Jiayin Gao , Haizhu Sun, Zhi Chen, Xiaohong Qiu","doi":"10.1016/j.critrevonc.2025.104736","DOIUrl":null,"url":null,"abstract":"<div><div>The rising number of cervical cancer cases is placing a heavy economic strain on the country and its people. Improving survival rates hinges on early detection, precise diagnosis, and thorough treatment. Common screening and diagnostic methods like Pap smears, HPV testing, colposcopy, and histopathological exams are used in clinical practice, but they are often costly, time-consuming, invasive, subjective, and may lack the necessary sensitivity and specificity for accurate diagnosis. Developing a quick, non-invasive, and precise method for cervical cancer screening is crucial. Raman spectroscopy offers structural insights without damaging samples, but its weak signals and interference from biological fluorescence limit its clinical use. Surface-Enhanced Raman Scattering (SERS) overcomes these challenges, and recent advances, especially when combined with machine learning, enhance cervical cancer diagnosis by enabling precise detection of tumor. This paper comprehensively reviews and summarizes the application of SERS in cervical cancer diagnosis, ranging from molecular biomarker detection to live cell level and then to tissue level diagnosis. By integrating with machine learning, it facilitates the development of accurate, non-invasive diagnosis of cervical cancer.</div></div>","PeriodicalId":11358,"journal":{"name":"Critical reviews in oncology/hematology","volume":"211 ","pages":"Article 104736"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in oncology/hematology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1040842825001246","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The rising number of cervical cancer cases is placing a heavy economic strain on the country and its people. Improving survival rates hinges on early detection, precise diagnosis, and thorough treatment. Common screening and diagnostic methods like Pap smears, HPV testing, colposcopy, and histopathological exams are used in clinical practice, but they are often costly, time-consuming, invasive, subjective, and may lack the necessary sensitivity and specificity for accurate diagnosis. Developing a quick, non-invasive, and precise method for cervical cancer screening is crucial. Raman spectroscopy offers structural insights without damaging samples, but its weak signals and interference from biological fluorescence limit its clinical use. Surface-Enhanced Raman Scattering (SERS) overcomes these challenges, and recent advances, especially when combined with machine learning, enhance cervical cancer diagnosis by enabling precise detection of tumor. This paper comprehensively reviews and summarizes the application of SERS in cervical cancer diagnosis, ranging from molecular biomarker detection to live cell level and then to tissue level diagnosis. By integrating with machine learning, it facilitates the development of accurate, non-invasive diagnosis of cervical cancer.
期刊介绍:
Critical Reviews in Oncology/Hematology publishes scholarly, critical reviews in all fields of oncology and hematology written by experts from around the world. Critical Reviews in Oncology/Hematology is the Official Journal of the European School of Oncology (ESO) and the International Society of Liquid Biopsy.