{"title":"Wound Tissue Regeneration by Microfluidic Generated Fibroblast Cell/CuO Nanosheet-Loaded Alginate Hydrogel on an Excisional Full-Thickness Rat Model","authors":"Zahra Oushyani Roudsari, Keivan Nedaei, Mahmood Araghi, Yousef Mortazavi and Samad Nadri*, ","doi":"10.1021/acsabm.5c0013210.1021/acsabm.5c00132","DOIUrl":null,"url":null,"abstract":"<p >Chronic ulcers present numerous challenges in treatment such as prolonged inflammation, infections resistant to drugs, and the formation of scars. In this research, we developed a calcium ion (Ca<sup>2+</sup>) cross-linked alginate (Alg) hydrogel loaded with CuO nanosheet/fibroblast cells via a microfluidic system with substantial efficiency in accelerating healing and preventing infection. Initially, the soft lithography method was utilized to fabricate the microfluidic system, which was employed to produce alginate hydrogel incorporating nanosheets of copper oxide (CuO) and MEF cells. The properties of hydrogel and copper oxide nanosheets were analyzed by using FE-SEM, EDS/EDX, and elemental mapping to determine their physicochemical characteristics. The viability of mouse embryonic fibroblast cells (MEF) in alginate–CuO hydrogel was explored through cell viability assay, and the antibacterial properties were also studied using colony-forming assay. The healing abilities of the hydrogel were investigated using an excisional, full-thickness wound rat model. Our results revealed proper antimicrobial and angiogenic properties with slight cytotoxicity for CuO nanosheets at a concentration of 25 μg/mL. The alginate–CuO-cell-treated group exhibited a faster wound contraction and healing among all treatments. The results of the in vivo assay along with histology and gene expression indicate a synergistic cooperation between MEF and CuO, leading to enhanced re-epithelialization, angiogenesis, and matrix remodeling. In this research, a therapeutic hydrogel with qualities like microbicidal, angiogenic, immune system modulation, and promotion of ECM and epithelium regeneration, resulting in faster healing, was developed. Moreover, there was a synergic impact noticed between CuO nanosheets and MEF cells as well as improved formation of blood vessels and collagen accumulation. In conclusion, this biocompatible hydrogel offers a promising strategy for effective wound healing without the need for invasive procedures.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 4","pages":"3389–3403 3389–3403"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsabm.5c00132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic ulcers present numerous challenges in treatment such as prolonged inflammation, infections resistant to drugs, and the formation of scars. In this research, we developed a calcium ion (Ca2+) cross-linked alginate (Alg) hydrogel loaded with CuO nanosheet/fibroblast cells via a microfluidic system with substantial efficiency in accelerating healing and preventing infection. Initially, the soft lithography method was utilized to fabricate the microfluidic system, which was employed to produce alginate hydrogel incorporating nanosheets of copper oxide (CuO) and MEF cells. The properties of hydrogel and copper oxide nanosheets were analyzed by using FE-SEM, EDS/EDX, and elemental mapping to determine their physicochemical characteristics. The viability of mouse embryonic fibroblast cells (MEF) in alginate–CuO hydrogel was explored through cell viability assay, and the antibacterial properties were also studied using colony-forming assay. The healing abilities of the hydrogel were investigated using an excisional, full-thickness wound rat model. Our results revealed proper antimicrobial and angiogenic properties with slight cytotoxicity for CuO nanosheets at a concentration of 25 μg/mL. The alginate–CuO-cell-treated group exhibited a faster wound contraction and healing among all treatments. The results of the in vivo assay along with histology and gene expression indicate a synergistic cooperation between MEF and CuO, leading to enhanced re-epithelialization, angiogenesis, and matrix remodeling. In this research, a therapeutic hydrogel with qualities like microbicidal, angiogenic, immune system modulation, and promotion of ECM and epithelium regeneration, resulting in faster healing, was developed. Moreover, there was a synergic impact noticed between CuO nanosheets and MEF cells as well as improved formation of blood vessels and collagen accumulation. In conclusion, this biocompatible hydrogel offers a promising strategy for effective wound healing without the need for invasive procedures.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.