{"title":"Multimodal Synergistic Antimicrobial Activity of the Copper-Doped and Oxygen-Defective In Situ Nanocoating on Medical Titanium","authors":"Leizi Chi, Jinteng Qi, Zhuo Ma*, Zeshuai Zhang, Yunfeng Qiu*, Tiedong Sun* and Shaoqin Liu*, ","doi":"10.1021/acsabm.5c0037610.1021/acsabm.5c00376","DOIUrl":null,"url":null,"abstract":"<p >To combat escalating antibiotic resistance in titanium implant-associated infections, oxygen-vacancy-rich polydopamine/TiCu nanocoating (PDA/p-TiCu-300 °C) was developed on medical-grade titanium, uniquely enabling synergistic photothermal (PTT), photodynamic (PDT), and sonodynamic (SDT) antimicrobial strategies. Unlike previous dual-modal approaches, this trimodal strategy, activated by near-infrared light and ultrasound, achieved exceptional broad-spectrum bactericidal efficacy against both <i>Escherichia coli</i> (99.19% killing) and <i>Staphylococcus aureus</i> (95.03% killing) via enhanced reactive oxygen species (ROS) generation and membrane disruption. The engineered oxygen vacancies within the PDA/p-TiCu-300 °C nanocoating significantly boosted ROS production, outperforming conventional photocatalytic materials. Crucially, the nanocoatings demonstrated excellent <i>in vitro</i> cytocompatibility. This PTT–PDT–SDT platform exhibits synergistic multimodal bactericidal activity, overcoming the limitations of existing strategies and representing a paradigm shift in implant surface modification with significant translational potential against severe infections.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 4","pages":"3560–3570 3560–3570"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsabm.5c00376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
To combat escalating antibiotic resistance in titanium implant-associated infections, oxygen-vacancy-rich polydopamine/TiCu nanocoating (PDA/p-TiCu-300 °C) was developed on medical-grade titanium, uniquely enabling synergistic photothermal (PTT), photodynamic (PDT), and sonodynamic (SDT) antimicrobial strategies. Unlike previous dual-modal approaches, this trimodal strategy, activated by near-infrared light and ultrasound, achieved exceptional broad-spectrum bactericidal efficacy against both Escherichia coli (99.19% killing) and Staphylococcus aureus (95.03% killing) via enhanced reactive oxygen species (ROS) generation and membrane disruption. The engineered oxygen vacancies within the PDA/p-TiCu-300 °C nanocoating significantly boosted ROS production, outperforming conventional photocatalytic materials. Crucially, the nanocoatings demonstrated excellent in vitro cytocompatibility. This PTT–PDT–SDT platform exhibits synergistic multimodal bactericidal activity, overcoming the limitations of existing strategies and representing a paradigm shift in implant surface modification with significant translational potential against severe infections.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.