Linlin You, Zihan Guo, Chau Yuen, Calvin Yu-Chian Chen, Yan Zhang, H. Vincent Poor
{"title":"A framework reforming personalized Internet of Things by federated meta-learning","authors":"Linlin You, Zihan Guo, Chau Yuen, Calvin Yu-Chian Chen, Yan Zhang, H. Vincent Poor","doi":"10.1038/s41467-025-59217-z","DOIUrl":null,"url":null,"abstract":"<p>Advances in Artificial Intelligence envision a promising future, where the personalized Internet of Things can be revolutionized with the ability to continuously improve system efficiency and service quality. However, with the introduction of laws and regulations about data security and privacy protection, centralized solutions, which require data to be collected and processed directly on a central server, become impractical for personalized Internet of Things to train Artificial Intelligence models for a variety of domain-specific scenarios. Motivated by this, this paper introduces Cedar, a secure, cost-efficient and domain-adaptive framework to train personalized models in a crowdsourcing-based and privacy-preserving manner. In essentials, Cedar integrates federated learning and meta-learning to enable a safeguarded knowledge transfer within personalized Internet of Things for models with high generalizability that can be rapidly adapted by individuals. Through evaluation using standard datasets from various domains, Cedar is seen to achieve significant improvements in saving, elevating, accelerating and enhancing the learning cost, efficiency, speed, and security, respectively. These results reveal the feasibility and robust-ness of federated meta-learning in orchestrating heterogeneous resources in the cloud-edge-device continuum and defending malicious attacks commonly existed in the Internet, thereby unlockingthe potential of Artificial Intelligence in reforming personalized Internet of Things.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"23 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59217-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in Artificial Intelligence envision a promising future, where the personalized Internet of Things can be revolutionized with the ability to continuously improve system efficiency and service quality. However, with the introduction of laws and regulations about data security and privacy protection, centralized solutions, which require data to be collected and processed directly on a central server, become impractical for personalized Internet of Things to train Artificial Intelligence models for a variety of domain-specific scenarios. Motivated by this, this paper introduces Cedar, a secure, cost-efficient and domain-adaptive framework to train personalized models in a crowdsourcing-based and privacy-preserving manner. In essentials, Cedar integrates federated learning and meta-learning to enable a safeguarded knowledge transfer within personalized Internet of Things for models with high generalizability that can be rapidly adapted by individuals. Through evaluation using standard datasets from various domains, Cedar is seen to achieve significant improvements in saving, elevating, accelerating and enhancing the learning cost, efficiency, speed, and security, respectively. These results reveal the feasibility and robust-ness of federated meta-learning in orchestrating heterogeneous resources in the cloud-edge-device continuum and defending malicious attacks commonly existed in the Internet, thereby unlockingthe potential of Artificial Intelligence in reforming personalized Internet of Things.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.