{"title":"Next-Generation Chromatography: Covalent Organic Frameworks in Biomedical Analysis","authors":"Kesava Kumar Vudatha, Raja Sundararajan, Lakshmi Vineela Nalla, Siva Nageswara Rao Gajula","doi":"10.1002/jssc.70148","DOIUrl":null,"url":null,"abstract":"<p>Chromatography, a cornerstone technique in analytical chemistry, continues to evolve with the emergence of novel stationary phases. Covalent organic frameworks (COFs) have garnered significant attention due to their unique properties and versatile applications. COFs, composed of covalently linked organic building blocks, exhibit high surface area, tunable porosity, and exceptional chemical stability. These attributes make them next-generation chromatographic techniques that leverage novel materials and methodologies to achieve significant improvements in separation efficiency, selectivity, speed, and/or sensitivity compared to traditional methods. COF stationary phases demonstrate remarkable selectivity for small molecules, peptides, proteins, and nucleic acids. Their use in drug discovery, metabolomics, proteomics, and clinical diagnostics is gaining momentum. In this review, we explored their synthesis strategies, emphasizing the design principles that enable tailoring of their physicochemical properties. Further, we discuss the immobilization of COFs onto solid supports, ensuring their compatibility with existing chromatographic systems. Furthermore, we highlighted case studies where COFs outperformed traditional stationary phases, improving sensitivity and resolution. We delve into the integration of COFs as stationary phases in biomedical analysis and explore various strategies for utilizing COFs as stationary phases in chromatographic separations.</p>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"48 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jssc.70148","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.70148","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chromatography, a cornerstone technique in analytical chemistry, continues to evolve with the emergence of novel stationary phases. Covalent organic frameworks (COFs) have garnered significant attention due to their unique properties and versatile applications. COFs, composed of covalently linked organic building blocks, exhibit high surface area, tunable porosity, and exceptional chemical stability. These attributes make them next-generation chromatographic techniques that leverage novel materials and methodologies to achieve significant improvements in separation efficiency, selectivity, speed, and/or sensitivity compared to traditional methods. COF stationary phases demonstrate remarkable selectivity for small molecules, peptides, proteins, and nucleic acids. Their use in drug discovery, metabolomics, proteomics, and clinical diagnostics is gaining momentum. In this review, we explored their synthesis strategies, emphasizing the design principles that enable tailoring of their physicochemical properties. Further, we discuss the immobilization of COFs onto solid supports, ensuring their compatibility with existing chromatographic systems. Furthermore, we highlighted case studies where COFs outperformed traditional stationary phases, improving sensitivity and resolution. We delve into the integration of COFs as stationary phases in biomedical analysis and explore various strategies for utilizing COFs as stationary phases in chromatographic separations.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.