{"title":"Emergence of Self–Organization of Atmospheric Moist Convection, as Seen Through the Energy–Cycle in Wavelet Space","authors":"Jun-Ichi Yano, Robert S. Plant","doi":"10.1029/2024MS004517","DOIUrl":null,"url":null,"abstract":"<p>The energy cycle of a convectively–organized system, as realized by a convective–scale idealized simulation, is analyzed in wavelet space. In the equilibrium state, most of the available potential energy that is generated by convective heating is immediately converted into kinetic energy by means of buoyancy forcing, consistent with the free–ride principle. In turn, most of the generated convective kinetic energy is manifest as gravity waves propagating away from convective centers. The kinetic energy of these small–scale gravity waves is transferred upscale by their own advective nonlinearities. Finally, a large–scale circulation generated by this “inverse cascade” drives the formation of an organized structure in the precipitation field.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004517","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004517","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The energy cycle of a convectively–organized system, as realized by a convective–scale idealized simulation, is analyzed in wavelet space. In the equilibrium state, most of the available potential energy that is generated by convective heating is immediately converted into kinetic energy by means of buoyancy forcing, consistent with the free–ride principle. In turn, most of the generated convective kinetic energy is manifest as gravity waves propagating away from convective centers. The kinetic energy of these small–scale gravity waves is transferred upscale by their own advective nonlinearities. Finally, a large–scale circulation generated by this “inverse cascade” drives the formation of an organized structure in the precipitation field.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.