Yang Liu, Mark R. Wenman, Catrin M. Davies, Fionn P. E. Dunne
{"title":"Understanding the hydride precipitation mechanism in HCP Zr polycrystals: a micromechanical approach","authors":"Yang Liu, Mark R. Wenman, Catrin M. Davies, Fionn P. E. Dunne","doi":"10.1007/s10853-025-10796-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the hydride precipitation in zirconium polycrystals during thermo-mechanical cycles. The precipitation and dissolution of mesoscale hydrides in Zircaloy-4 is modelled using crystal plasticity finite element methods supported with DFT-informed zirconium lattice hydrogen concentration. Results for a tri-crystal case show the effects of crystallography, thermo-mechanical load and elasto-plastic anisotropy on hydride nucleation and growth. Analyses of polycrystalline models provide new insights into the complex precipitation process of hydrides in Zircaloy-4 with explicit representation of experimental observations that lay the foundation for further research in this field. Micromechanical findings demonstrate the importance of microstructure, pre-thermal condition, and hydrogen concentration limit on hydride precipitation. Overall, the study provides a deeper understanding of hydride formation during industrially relevant reactor conditions.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 14","pages":"6254 - 6287"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10853-025-10796-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-10796-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the hydride precipitation in zirconium polycrystals during thermo-mechanical cycles. The precipitation and dissolution of mesoscale hydrides in Zircaloy-4 is modelled using crystal plasticity finite element methods supported with DFT-informed zirconium lattice hydrogen concentration. Results for a tri-crystal case show the effects of crystallography, thermo-mechanical load and elasto-plastic anisotropy on hydride nucleation and growth. Analyses of polycrystalline models provide new insights into the complex precipitation process of hydrides in Zircaloy-4 with explicit representation of experimental observations that lay the foundation for further research in this field. Micromechanical findings demonstrate the importance of microstructure, pre-thermal condition, and hydrogen concentration limit on hydride precipitation. Overall, the study provides a deeper understanding of hydride formation during industrially relevant reactor conditions.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.