Junyi Wu , Yan Huang , Min Gao , Yuzhen Niu , Yuzhong Chen , Qiang Wu
{"title":"High-order diversity feature learning for pedestrian attribute recognition","authors":"Junyi Wu , Yan Huang , Min Gao , Yuzhen Niu , Yuzhong Chen , Qiang Wu","doi":"10.1016/j.neunet.2025.107463","DOIUrl":null,"url":null,"abstract":"<div><div>Pedestrian attribute recognition (PAR) involves accurately identifying multiple attributes present in pedestrian images. There are two main approaches for PAR: part-based method and attention-based method. The former relies on existing segmentation or region detection methods to localize body parts and learn corresponding attribute-specific feature from the corresponding regions, where the performance heavily depends on the accuracy of body region localization. The latter adopts the embedded attention modules or transformer attention to exploit detailed feature. However, it can focus on certain body regions but often provide coarse attention, failing to capture fine-grained details, the learned feature may also be interfered with by irrelevant information. Meanwhile, these methods overlook the global contextual information. This work argues for replacing coarse attention with detailed attention and integrating it with global contextual feature from ViT to jointly represent attribute-specific regions. To tackle this issue, we propose a High-order Diversity Feature Learning (HDFL) method for PAR based on ViT. We utilize a polynomial predictor to design an Attribute-specific Detailed Feature Exploration (ADFE) module, which can construct the high-order statistics and gain more fine-grained feature. Our ADFE module is a parameter-friendly method that provides flexibility in deciding its utilization during the inference phase. A Soft-redundancy Perception Loss (SPLoss) is proposed to adaptively measure the redundancy between feature of different orders, which can promote diverse characterization of features. Experiments on several PAR datasets show that our method achieves a new state-of-the-art (SOTA) performance. On the most challenging PA100K dataset, our method outperforms previous SOTA by 1.69% and achieves the highest mA of 84.92%.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107463"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025003429","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Pedestrian attribute recognition (PAR) involves accurately identifying multiple attributes present in pedestrian images. There are two main approaches for PAR: part-based method and attention-based method. The former relies on existing segmentation or region detection methods to localize body parts and learn corresponding attribute-specific feature from the corresponding regions, where the performance heavily depends on the accuracy of body region localization. The latter adopts the embedded attention modules or transformer attention to exploit detailed feature. However, it can focus on certain body regions but often provide coarse attention, failing to capture fine-grained details, the learned feature may also be interfered with by irrelevant information. Meanwhile, these methods overlook the global contextual information. This work argues for replacing coarse attention with detailed attention and integrating it with global contextual feature from ViT to jointly represent attribute-specific regions. To tackle this issue, we propose a High-order Diversity Feature Learning (HDFL) method for PAR based on ViT. We utilize a polynomial predictor to design an Attribute-specific Detailed Feature Exploration (ADFE) module, which can construct the high-order statistics and gain more fine-grained feature. Our ADFE module is a parameter-friendly method that provides flexibility in deciding its utilization during the inference phase. A Soft-redundancy Perception Loss (SPLoss) is proposed to adaptively measure the redundancy between feature of different orders, which can promote diverse characterization of features. Experiments on several PAR datasets show that our method achieves a new state-of-the-art (SOTA) performance. On the most challenging PA100K dataset, our method outperforms previous SOTA by 1.69% and achieves the highest mA of 84.92%.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.