Physical-layer secure key distribution for dynamic fiber links using transfer learning

IF 2.6 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuhao Zhong , Jian Hu , Yingxue Liu , Xinran Huang , Zhi Chai , Mingye Li , Liuming Zhang , Jing Wen , Xuelin Yang
{"title":"Physical-layer secure key distribution for dynamic fiber links using transfer learning","authors":"Yuhao Zhong ,&nbsp;Jian Hu ,&nbsp;Yingxue Liu ,&nbsp;Xinran Huang ,&nbsp;Zhi Chai ,&nbsp;Mingye Li ,&nbsp;Liuming Zhang ,&nbsp;Jing Wen ,&nbsp;Xuelin Yang","doi":"10.1016/j.yofte.2025.104239","DOIUrl":null,"url":null,"abstract":"<div><div>Physical-layer secure key distribution (PLSKD) in fiber enhances security by utilizing channel dynamics to generate secure keys. However, PLSKD is significantly influenced by various channel scenarios. To improve the application of PLSKD, we investigate the use of transfer learning to enhance the performances. By leveraging the nonlinear mapping capabilities of neural networks using transfer learning, a high correlation coefficient and stable key generation rates across optical links of different fiber lengths are achieved, with lower computational requirements. Experimental results show that models pre-trained on a 100 km fiber link can be fine-tuned and effectively applied to a 300 km link, demonstrating excellent generalization and faster convergence with the same data volume. The proposed algorithm provides a practical solution for optimizing PLSKD performance in dynamic fiber links.</div></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"93 ","pages":"Article 104239"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520025001142","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Physical-layer secure key distribution (PLSKD) in fiber enhances security by utilizing channel dynamics to generate secure keys. However, PLSKD is significantly influenced by various channel scenarios. To improve the application of PLSKD, we investigate the use of transfer learning to enhance the performances. By leveraging the nonlinear mapping capabilities of neural networks using transfer learning, a high correlation coefficient and stable key generation rates across optical links of different fiber lengths are achieved, with lower computational requirements. Experimental results show that models pre-trained on a 100 km fiber link can be fine-tuned and effectively applied to a 300 km link, demonstrating excellent generalization and faster convergence with the same data volume. The proposed algorithm provides a practical solution for optimizing PLSKD performance in dynamic fiber links.
基于迁移学习的动态光纤链路物理层安全密钥分配
光纤物理层安全密钥分配(PLSKD)利用信道动态生成安全密钥,从而增强了安全性。然而,PLSKD 受各种信道情况的影响很大。为了改进 PLSKD 的应用,我们研究了如何利用迁移学习来提高其性能。通过利用神经网络的非线性映射能力和迁移学习,在不同光纤长度的光链路上实现了高相关系数和稳定的密钥生成率,同时降低了计算要求。实验结果表明,在 100 千米光纤链路上预先训练好的模型可以进行微调,并有效地应用于 300 千米链路,在相同数据量的情况下表现出卓越的泛化能力和更快的收敛速度。所提出的算法为优化动态光纤链路中的 PLSKD 性能提供了实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical Fiber Technology
Optical Fiber Technology 工程技术-电信学
CiteScore
4.80
自引率
11.10%
发文量
327
审稿时长
63 days
期刊介绍: Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews. Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信