Aquatic toxicity of leachates from crystalline silicon photovoltaic components

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Brianna C. Tavolacci, Preeti Nain, Annick Anctil
{"title":"Aquatic toxicity of leachates from crystalline silicon photovoltaic components","authors":"Brianna C. Tavolacci,&nbsp;Preeti Nain,&nbsp;Annick Anctil","doi":"10.1016/j.jenvman.2025.125400","DOIUrl":null,"url":null,"abstract":"<div><div>Previous ecotoxicological assessments of solar photovoltaic (PV) technologies vary considerably and focus solely on the active cell layer. A comprehensive evaluation of all possible sources of toxicity is required for proper disposal classification of waste materials. We evaluated the aquatic ecotoxicity of separated PV components from three crystalline silicon modules to crustacea, <em>Daphnia magna</em>. Modules were separated into three categories for testing: 1) powdered glass and cell, 2) encapsulation and back sheet polymers, and 3) junction box and cables. Batch leachates were used in bioassays and assessed for metal and microplastic leaching. The powder and polymers from two tested modules had little observed impact on daphnids, while the third showed significant toxicity with EC50s at 5% or less leachate. One junction box and cable mixture had significant toxicity with an EC50 of less than 10%. Upon metal analysis, Al and Ag leached in high concentrations upon metal analysis and were the primary suspects for ecotoxicological effects. Microplastics were not detected in powder or encapsulation and back sheet leachates, while there was evidence of hydrocarbon polymers in junction box and cable leachates. This work confirmed that metals in the active layer of solar modules are a primary source of concern, and potential microplastic leaching from junction boxes and cables should not be overlooked. Overall, the acute toxicity of silicon solar photovoltaics depends on the module type, components considered, and leachate exposure concentrations.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"382 ","pages":"Article 125400"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725013763","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Previous ecotoxicological assessments of solar photovoltaic (PV) technologies vary considerably and focus solely on the active cell layer. A comprehensive evaluation of all possible sources of toxicity is required for proper disposal classification of waste materials. We evaluated the aquatic ecotoxicity of separated PV components from three crystalline silicon modules to crustacea, Daphnia magna. Modules were separated into three categories for testing: 1) powdered glass and cell, 2) encapsulation and back sheet polymers, and 3) junction box and cables. Batch leachates were used in bioassays and assessed for metal and microplastic leaching. The powder and polymers from two tested modules had little observed impact on daphnids, while the third showed significant toxicity with EC50s at 5% or less leachate. One junction box and cable mixture had significant toxicity with an EC50 of less than 10%. Upon metal analysis, Al and Ag leached in high concentrations upon metal analysis and were the primary suspects for ecotoxicological effects. Microplastics were not detected in powder or encapsulation and back sheet leachates, while there was evidence of hydrocarbon polymers in junction box and cable leachates. This work confirmed that metals in the active layer of solar modules are a primary source of concern, and potential microplastic leaching from junction boxes and cables should not be overlooked. Overall, the acute toxicity of silicon solar photovoltaics depends on the module type, components considered, and leachate exposure concentrations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信