Wenxin Zhang , Jialin Wang , Jiayu Ji , Peiwen Wang , Guiqiang Yuan , Sheng Fang , Fusheng Liu , Guishan Jin , Junwen Zhang
{"title":"Glioblastoma cells secrete ICAM1 via FASN signaling to promote glioma-associated macrophage infiltration","authors":"Wenxin Zhang , Jialin Wang , Jiayu Ji , Peiwen Wang , Guiqiang Yuan , Sheng Fang , Fusheng Liu , Guishan Jin , Junwen Zhang","doi":"10.1016/j.cellsig.2025.111823","DOIUrl":null,"url":null,"abstract":"<div><div>Glioma-associated macrophages (GAMs) constitute the most abundant subset of immune cells in the glioblastoma (GBM) microenvironment, but the underlying mechanism of intense infiltration needs to be elucidated. In this study, we found that GBM cells secrete ICAM1 via FASN signaling to promote GAM infiltration. FASN expression is correlated with GAM density in GBM patients. In vitro experiments revealed that FASN regulates the type-I interferon pathway, particularly STAT1 expression. Moreover, disrupting FASN-STAT1 signaling through the overexpression or inhibition of FASN or STAT1 in GBM cells strongly influences microglial recruitment. Additionally, ICAM1 acts as a direct transcriptional candidate of FASN-STAT1 and a paracrine soluble factor, recruiting microglia to GBM tumors. This study revealed crosstalk between GBM cells and GAMs through FASN-STAT1-ICAM1 signaling to promote microglial infiltration, suggesting potential strategies for treating GBM patients.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"132 ","pages":"Article 111823"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656825002360","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioma-associated macrophages (GAMs) constitute the most abundant subset of immune cells in the glioblastoma (GBM) microenvironment, but the underlying mechanism of intense infiltration needs to be elucidated. In this study, we found that GBM cells secrete ICAM1 via FASN signaling to promote GAM infiltration. FASN expression is correlated with GAM density in GBM patients. In vitro experiments revealed that FASN regulates the type-I interferon pathway, particularly STAT1 expression. Moreover, disrupting FASN-STAT1 signaling through the overexpression or inhibition of FASN or STAT1 in GBM cells strongly influences microglial recruitment. Additionally, ICAM1 acts as a direct transcriptional candidate of FASN-STAT1 and a paracrine soluble factor, recruiting microglia to GBM tumors. This study revealed crosstalk between GBM cells and GAMs through FASN-STAT1-ICAM1 signaling to promote microglial infiltration, suggesting potential strategies for treating GBM patients.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.